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a b s t r a c t

This paper is concernedwith the study of the rate of central limit theorem for themaximum
likelihood estimator θ̂T of the unknown parameter θ > 0, based on the observation
X = {Xt , 0 ≤ t ≤ T }, occurring in the drift coefficient of an Ornstein–Uhlenbeck process
dXt = −θXtdt + dWt , X0 = 0 for 0 ≤ t ≤ T , where {Wt , t ≥ 0} is a standard Brownian
motion. The tool we use is an Edgeworth expansionwith an explicitly expressed remainder.
We prove that upper and lower bounds, obtained by controlling the remainder term, give
an optimal rate 1

√
T
in Kolmogorov distance for normal approximation of θ̂T .

© 2017 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we find an optimal rate of convergence of the distribution of the maximum likelihood estimator (MLE) of
the unknown parameter θ ∈ Θ ⊆ R+ based on the observation X = {Xt , 0 ≤ t ≤ T } given by

dXt = −θXtdt + dWt , X0 = 0, 0 ≤ t ≤ T , (1)

where {Wt , t ≥ 0} is a standard Brownian motion. When the process {Xt , 0 ≤ t ≤ T } can be observed, the MLE θ̂T is given
by 

T
2θ

(θ̂T − θ) =

−


2θ
T ST

2θ
T ⟨S⟩T

, (2)

where

ST =

 T

0
XtdWt and ⟨S⟩T =

 T

0
X2
t dt.
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Here we just employ the label ⟨S⟩T of the quadratic variation as the notation. It is well known that θ̂T is strongly consistent
and

√
T/2θ(θ̂T − θ) converges to Gaussian random variable with the mean zero and unit variance as T tends to infinity (see

Basawa & Prakasa Rao, 1980).
For the Berry–Esseen bound of the MLE θ̂T , Mishra and Prakasa Rao in Mishra and Prakasa Rao (1985) obtained the rate

O(T−1/5) by using the technique of Michel and Pfanzagl (1971). In Bose (1985), author decomposed the numerator in (2)
into two parts by using Itó formula, and obtained the rate O(T−1/2 log T ). In Bishwal and Bose (1995), authors improve
the rate to O(T−1/2√log T ) by using a characteristic function for normal approximation of the numerator and moment
generating function for the convergence of denominator. Afterwards, Bishwal (2000) improved the Berry–Esseen bound
for θ̂T to O(T−1/2) through the squeezing techniques of Pfanzagl (1971) developed for the minimum contrast estimator in
Pfanzagl (1971) (for more information, see Bishwal, 2008).

The aim of the presentwork is to show that the upper bound T−1/2 obtained by Bishwal (2000) is sharp by finding a lower
bound with the same speed, that is an optimal Berry–Esseen bound for θ̂T . As a tool for this, we use a one-term Edgeworth
expansion fromKim and Park (submitted for publication). By using thismethod, we also find the upper bound T−1/2 obtained
by Bishwal (2000). We stress that our technique is more straightforward than the squeezing techniques used in the paper
(Bishwal, 2000). Moreover, our technique is widely used for an optimal rate for parameter estimation of Gaussian processes.

We simply state the method of a one-term Edgeworth expansion. Let {Fn, n ≥ 1} be a sequence of random variables of
functional of infinite-dimensional Gaussian fields associated with an isonormal Gaussian process defined on a probability
space (Ω, F, P). Authors (Kim& Park, submitted for publication), by combiningMalliavin calculus and repeated applications
of Stein’s equations, find a one-term Edgeworth expansionwith an explicit expression of the remainder Rn(z):

P(Fn ≤ z) − P(Z ≤ z) = −
1
3!

H2(z)φ(z)κ3(Fn) + Rn(z), (3)

where H2(z) denotes the second Hermite polynomial, κ3(Fn) denotes the the third cumulant of Fn, Z is a standard Gaussian
random variable and

φ(z) =
1

√
2π

e−
1
2 z

2
.

For our work, we use this Edgeworth expansion (3) of the distribution function P


T
2θ (θ̂T − θ) ≤ z


. By controlling

the remainder after required terms to obtain an upper (or lower) bound in the Kolmogorov distance, we obtain an optimal

Berry–Esseen bound of a sequence


T
2θ (θ̂T −θ)


. We say that the bound ϕ(T ) is optimal for the sequence {FT , T ≥ 0}with

respect to the distance d if there exist constants 0 < c < C < ∞ (not depending on T ) such that, for sufficiently large T ,

c ≤
d(FT ,N)

ϕ(T )
≤ C . (4)

In this paper, we focus on the normal approximation of random variables with respect to the Kolmogorov distance defined
by

d(X, Y ) = sup
z∈R

|P(X ≤ z) − P(Y ≤ z)|.

The rest of the paper is organized as follows. Section 2 reviews some basic notations and results of Gaussian analysis and
Malliavin calculus. In Section 3, we prove that the rate T−1/2 is an optimal rate of CLT for the MLE θ̂T .

2. Preliminaries

In this section, we recall some basic facts about Malliavin calculus for Gaussian processes. The reader is referred to
Nourdin and Peccati (2012) and Nualart (2006) for a more detailed explanation. Suppose that H is a real separable Hilbert
space with scalar product denoted by ⟨·, ·⟩H. Let B = {B(h), h ∈ H} be an isonormal Gaussian process, that is a centered
Gaussian family of random variables such that E[B(h)B(g)] = ⟨h, g⟩H. For every n ≥ 1, let Hn be the nth Wiener chaos of
B, that is the closed linear subspace of L2(Ω) generated by {Hn(B(h)) : h ∈ H, ∥h∥H = 1}, where Hn is the nth Hermite
polynomial. We define a linear isometric mapping In : H⊙n

→ Hn by In(h⊗n) = n!Hn(B(h)), where H⊙n is the symmetric
tensor product. It iswell known that any square integrable randomvariable F ∈ L2(Ω, G, P) (Gdenotes theσ -field generated
by B) can be expanded into a series of multiple stochastic integrals:

F =

∞
k=0

Ik(fk),

where f0 = E[F ], the series converges in L2, and the functions fk ∈ H⊙k are uniquely determined by F .
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