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a b s t r a c t

This paper considers a varying asymmetric kernel estimation of the density f for non-
negative data. Regardless of f (0) = 0 or f (0) > 0, it is important to give a good vary-
ing shape/scale parameter for the inverse gamma (IGam) kernel, due to the problem off (0) = 0 in some existing literature. After reformulating the IGam kernel density estima-
tor, asymptotic properties like mean integrated squared error, mean integrated absolute
error, strong consistency, and asymptotic normality are investigated in detail, under some
conditions on the target density f . Simulation studies are conducted to compare the pro-
posed IGam kernel density estimators with the existing gamma kernel density estimators.

© 2016 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

This paper considers estimation of a density f that has support [0, ∞) = R+ (say). In this setting, the standard kernel
density estimator (e.g., Wand & Jones, 1995);f (x) = (nh)−1 n

i=1 k((x − Xi)/h), where k(·) is a symmetric kernel and
h = hn > 0 is a bandwidth tending to 0 as n → ∞, suffers from the so-called boundary bias or edge effect. To solve this
problem, many remedies have been suggested in the literature. See Hall and Park (2002), Jones (1993), Karunamuni and
Alberts (2005), Marron and Ruppert (1994), and Zhang, Karunamuni, and Jones (1999).

As an alternative device to these boundary correction methods, Chen (2000) proposed to replace the usual (location-
scale) kernel 1

h k( x−s
h ) by a gamma (Gam) kernel

kGamp,σ (s) =
sp−1

σ pΓ (p)
exp


−

s
σ


,

in such a way that the shape parameter is suitably parameterized by x and b, where the scale parameter plays a role of a
smoothing parameter b = bn > 0 that tends to 0 as n → ∞. It is a ‘‘varying kernel’’, whose support matches the support of
the density f to be estimated. More precisely, the Gam kernel density estimators were defined by

f Gam1
b (x) =

1
n

n
i=1

kGamx/b+1,b(Xi), f Gam2
b (x) =

1
n

n
i=1

kGamϱ(x/b),b(Xi), x ∈ R+, (1)
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where

ϱ(t) =


t, t ≥ 2,
t2

4
+ 1, 0 ≤ t ≤ 2.

Chen (2000) showed that both f Gam1
b and f Gam2

b are boundary-bias-free density estimators and achieve the rate of
convergence of the mean integrated squared error (MISE) of order O(n−4/5), and that the second estimatorf Gam2

b is superior
to the first onef Gam1

b in the sense of the optimal asymptotic MISE. It should be emphasized that the last fact was further
extended by Igarashi and Kakizawa (2014), as follows: In a class of the Gam kernel density estimators

f Gam2
b,d (x) =

1
n

n
i=1

kGamϱd(x/b),b(Xi), x ∈ R+,

where

ϱd(t) =


t + d, t ≥ 2,

(d + 1)
 t
2

2/(d+1)
+ 1, 0 ≤ t ≤ 2

(d > −1 is a constant), the estimatorf Gam2
b,1/4 has the best performance in terms of the optimal asymptotic MISE; note thatf Gam2

b,1 =f Gam1
b andf Gam2

b,0 =f Gam2
b , since ϱ1(t) = t + 1 and ϱ0(t) = ϱ(t).

Mnatsakanov and Ruymgaart (2012) studied the density estimator

f MDMR(x) =
1
n

n
i=1

α

x(α − 1)!

αXi

x

α−1
exp


−

αXi

x


=

1
n

n
i=1

kGamα,x/α(Xi), x ∈ R+, (2)

which is referred to as a moment density (MD) estimator by construction, where α = αn ∈ N diverges as n → ∞.
Mnatsakanov and Sarkisian (2012) (see also Koul & Song, 2013) further developed other MD estimators

f MD∗
MS(x) =

1
n

n
i=1

1
Xi(α − 1)!

αx
Xi

α

exp

−

αx
Xi


, f MDMS(x) =

1
n

n
i=1

1
Xiα!

αx
Xi

α+1
exp


−

αx
Xi


, x ∈ R+. (3)

The leading term of the variance of the MD estimators (2) and (3) was shown to be (
√

α/n)f (x)/(2
√

πx) for each x > 0; see
Mnatsakanov and Ruymgaart (2012) and Mnatsakanov and Sarkisian (2012), whereas, for x/b → ∞, the leading term
of the variance of Chen’s (2000) density estimator (1) was given by (n

√
b)−1f (x)/(2

√
πx). At first inspection, the MD

estimator may be more attractive than Chen (2000), since the coefficient function 1/(2
√

πx) in the asymptotic variance
formula becomes smaller as x increases, with the decay 1/x, rather than 1/

√
x in Chen’s case. However, the condition

R+
f (x)/x dx < ∞ for theMISE; see (16) and (23) inMnatsakanov and Ruymgaart (2012), excludes any bounded continuous

density f on R+ with f (0) > 0. Note that the integrated variance of Chen’s density estimators (1) is approximated by
(n

√
b)−1


R+

f (x)/(2
√

πx) dx, which exists, at least,when the target density f is bounded continuous onR+. Tomakematters
worse, one observes that the definitions (2) and (3) are somewhat ‘‘bad’’, because the intrinsic constraintsf MDMR(0) =f MD∗

MS(0) =f MDMS(0) = 0 are undesirable when f (0) > 0.
Despite of these facts, the MD estimators (3) can be viewed as inverse gamma (IGam) kernel density estimators. That is,

using the notation

kIGamp,σ (s) =
σ p

Γ (p)sp+1
exp


−

σ

s


,

we havef MD∗
MS(x) = n−1 n

i=1 k
IGam
α,αx (Xi) andf MDMS(x) = n−1 n

i=1 k
IGam
α+1,αx(Xi), x ∈ R+, with shape parameter p = α

or α + 1 and scale parameter σ = αx. Consequently, the integer parameter α ∈ N (α → ∞) of Mnatsakanov and
Ruymgaart (2012) and Mnatsakanov and Sarkisian (2012) can be enlarged to be the positive real number parameter (i.e.,
α = 1/b → ∞). Recently, Mousa, Hassan, and Fathi (2016) considered another parameterization of (p, σ ) to suggest a new
density estimator1

f IGamMHF
b (x) =

1
n

n
i=1

kIGamx/b+2,x(x/b+1)(Xi), x ∈ R+ (4)

as an alternative to Chen (2000). This definition, however, is still ‘‘bad’’, due tof IGamMHF
b (0) = 0.

1 Mousa et al. (2016) used the argument by Scaillet (2004) (see also Jin & Kawczak, 2003), i.e., the Taylor expansion of s−1/2f (s) around s = x, to derive the
asymptotic variance of their estimator (4). However, such a task would be inconvenient, compared to our derivation, relying only on the Taylor expansion
of f (s) around s = x, as in Igarashi (2016) and Igarashi and Kakizawa (2014). Anyway, their final result of V [f IGamMHF

b (x)] is incorrect; we see that, when
x/b → ∞, its asymptotic variance should read (nb1/2)−1f (x)/(2

√
πx), as in Chen’s (2000) density estimators (1).

Mnatsakanov and Sarkisian (2012) and Mousa et al. (2016) seemed to mention the MISEs of the estimators (3) and (4), without careful analysis of the
error terms (i.e., their derivations were formal).
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