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a b s t r a c t

An integral-equation formulation has been derived for nonlinear deformation in a stack of buffered

Kirchhoff plates. The plates are assumed to follow a nonlinear bending moment-curvature law and the

buffer material to follow the generalized Hooke’s law. By employing the recently derived special

Green’s function for multilayers with interfacial membrane and flexural rigidities as the kernel, the

integral-equation formulation only involves the surface loading area (for application to an indentation

problem) and the portion of plates undergoing nonlinear deformation. Based on the integral equation,

an efficient and accurate boundary element method has been derived to numerically solve the

cylindrical indentation problem of the material with a bilinear flexural bending law for the plates.

Numerical examples are presented to show a progressive damage process of yielding across a stack of

plates as well as to demonstrate the validity and accuracy of the present integral-equation formulation.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Layers sandwiched by parallel plates, or say, a stack of buffered
parallel plates, can be found in many engineered materials
and structures for applications to vibration/noise damping,
weight reduction, impact protection, etc. [1–3]. Most recently,
Yang et al. [4] proposed to model graphite [5,6] at the nanometer
scale as a stack of buffered plates. The plates represent the
covalent bonding effect within individual graphene sheets, whilst
the buffer material models the Van der Waals interaction between
adjacent graphene sheets. This model can also be extended to
other nanolayered materials similar to graphite [7–11]. These
materials are strongly anisotropic, if not elastically, then upon
plastic deformation and delamination across the basal planes.
They analyzed the cylindrical indentation problem of graphite at
the nanoscale, but only in the linear elastic limit. Strong
concentration of loading was predicted to occur in the plates at
the edges of contact. Naturally nonlinear deformation and damage
are expected to initiate at those locations. In the present study, we
derive an integral-equation formulation of this composite system
with the plates capable of undergoing nonlinear deformation in
the flexural mode. Furthermore, we derive an efficient and

accurate boundary element method based on the integral
equations to numerically solve the nonlinear deformation pro-
blem in a stack of buffered plates under indentation. Since the
recently derived special Green’s function for multilayers with
interfacial membrane and flexural rigidities [4,12] is taken as the
integral kernel, the numerical scheme is efficient by only
involving the indentation loading area and the part of plates
undergoing nonlinear deformation. However, while focusing on
the integral-equation formulation, this work is not intended to
analyze the behavior of graphite or a similar material with
realistic nonlinear constitutive laws, which has not been available
in the literature.

The rest of the paper is organized as follows. In Section 2, the
model material consisting of a stack of buffered plates is
described. Plastic bending is considered for the plates. In
Section 3, an integral equation is derived that expresses the
displacement field in the buffer layers as an integral over
the indentation contact area and the portion of plates undergoing
nonlinear deformation. In Section 4, an efficient and
accurate boundary element method is derived based on the
integral-equation formulation. It is capable of solving for the
damage processes as well as the deformation field in the material
under indentation. In Section 5, numerical examples are
presented to show a progressive damage process across a stack
of plates and to demonstrate the validity and accuracy of the
formulation. In Section 6, conclusions are finally drawn.
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2. Model material consisting of a stack of buffered plates

A semi-infinite composite system consisting of a stack of
parallel Kirchhoff plates buffered by a linearly elastic and
isotropic material is considered, as schematically shown in
Fig. 1. The plane-strain condition is assumed. The Kirchhoff
plates are linear in the in-plane membrane deformation mode but
nonlinear in the flexural bending mode. The Cartesian coordinate
system is established with the x1-axis parallel to and the x3-axis
normal and pointing into the surface. The x2-axis is the direction
of trivial deformation.

The two-phase composite structure requires two sets of
equilibrium equations for the plates and the buffer material. The
set of equilibrium equations for the plates that may deform
longitudinally and bend about the x2-axis are given by [13]

N,1þ f ¼ 0; M,11þq¼ 0, ð1Þ

where N is the x1-component of the membrane stress (of the
dimension of force/length), M the bending moment parallel to the
x2-axis, and f and q are the longitudinal and transverse
components of the body force density on a plate, respectively.
The comma in the subscript denotes the partial differentiation
with respect to the indices that follow.

The linear in-plane constitutive law of the plates is given by

N¼ E
0

uðpÞ1,1, ð2Þ

where E
0

is the membrane stiffness (under the plane-strain
condition), and u(p) is the longitudinal displacement component
of the plate.

The nonlinear flexural constitutive law of the plates is given by

M¼Dðk�k0Þ, ð3Þ

where D is the flexural rigidity, k (��w,11) the curvature, and k0 a
damage parameter. In the definition of k, w is the transverse
displacement component u3, i.e., deflection, of the plate. D is set to
be a constant. k0 may change with loading as described later. It
may be understood as the residual curvature in a plate upon
yielding. Although the following integral equations can be derived
for an arbitrary damage evolution law of the plates, a bilinear
flexural bending law is assumed and will be implemented in later
simulations. The bilinear flexural bending law is sketched in Fig. 2.

The plates are initially linearly elastic. They yield at a critical
moment My (and correspondingly a critical curvature ky) beyond
which work-hardening occurs at a constant ratio r. By specifying
the work-hardening ratio r one can determine the damage
parameter k0 from the current curvature k on a monotonic
loading path as

k0 ¼
0 for9k9oky

ð1�rÞðk�kyÞ otherwise
:

(
ð4Þ

The equilibrium equations for the buffer material in the
absence of body force are given by

sij,j ¼ 0, ð5Þ

where sij is the stress component, and the repeated indices
indicate the Einstein convention of summation. The constitutive
law of the buffer material is given by

sij ¼ Cijkluk,l, ð6Þ

where Cijkl is the elastic constant, and uk the displacement
component of the buffer layer. Since the plane-strain condition
is assumed, the Latin indices all take values 1 and 3—value 2 is
trivial—within the coordinate system as defined in Fig. 1.

The continuity conditions of displacement and traction are
enforced at the interfaces between the plates and the buffer
layers. It results in the continuity condition of displacement and
the discontinuity condition of traction across a plate as

Dui ¼ 0, ð7Þ

Dp1 ¼ f and Dp3 ¼ q: ð8Þ

By substituting Eqs. (1)–(3) into Eq. (8) and realizing that the
displacements of the plate and the layer at the interfaces are the
same, Eq. (8) is recast into

Dpi ¼ Aijujþp0
i , ð9Þ

with

Aij

� �
¼

�E
@2

@x2
1

0

0 D
@4

@x4
1

2
66664

3
77775with i,j¼ 1,3 ð10Þ

fp0
i g ¼

0

Dk0,11

( )
with i¼ 1,3: ð11Þ
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Fig. 1. (a) A stack of buffered Kirchhoff plates under cylindrical indentation;

(b) discretization of potential areas of indentation contact and nonlinear plate

deformation.
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Fig. 2. A bilinear bending moment-curvature law for flexural deformation of a

plate.
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