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a b s t r a c t

We revisit the classical statistical inference problem of comparing regression curves.
Traditional methods assume that the number of curves is small and fixed, while the sample
size on which each curve is based tends to infinity. In contrast, we consider the case where
the number of curves tends to infinity and the sample sizes are bounded by a common
value. Our test is motivated by the fact that two Borel measurable functions are equivalent
if and only if their Fourier transforms are identical (Bierens, 1994). An unbiased statistic is
then proposed to avoid noise accumulation in a high-dimensional context. The asymptotic
null distribution of the test statistic is derived and its power is studied via simulation. An
illustration involving cholesterol data is provided.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

High-dimensional data analysis has gained in popularity over the last few years, as observations involving a large
number of variables now arise in a wide range of applications, e.g., in genomics, signal processing, and finance. Traditional
statistical inferencemethodsmay not work in the high-dimensional regime, mainly due to noise accumulation and spurious
correlations. This challenge calls for new statistical tests to deal with high-dimensional data sets. See [1,4,5,10,25] for
inferences on high-dimensional mean vectors, [6,14,21,31] for tests for high-dimensional covariance structures, and [11,30]
for high-dimensional regression coefficient tests.

In this work, we consider the problem of testing the equality of p regression curves of unknown functional form. In the
classical literature, p is assumed to be small and fixed, and asymptotic analysis proceeds by letting the sample size on which
each curve is based tend to infinity. In contrast, we consider a setting where the number of curves tends to infinity. This
testing problem arises in the framework of high-dimensional statistical inference mentioned above. The related issue which
consists of testing the equality of a large number of densities was recently discussed in [29].

Suppose p regression curves are observed independently and, for i ∈ {1, . . . , p}, the ith curve consists of ni random
observations (Xi1, Yi1), . . . , (Xini , Yini ). Further assume that the response Yij is related to the d-dimensional covariate Xij
according to a nonparametric regression model, i.e.,

∀i∈{1,...,p} ∀j∈{1,...,ni} Yij = mi(Xij) + ϵij,

where m1, . . . ,mp are unknown regression functions and the ϵijs are random errors satisfying E(ϵij | Xij) = 0. We are
interested in justifying the equality of these p curves under the assumption that all the Xijs are independent and identically
distributed (iid) as X . The null hypothesis to be tested is thus

H0 : Pr{m1(X) = · · · = mp(X)} = 1. (1)
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We focus on the case where many curves are based on relatively small samples.
The comparison of two or more regression curves has been the object of much work; see Section 7 of [12] for a recent

review. For nonparametric models, most approaches rely on estimators of all regression curves using smoothing techniques.
Generally, there are two ways to construct a test statistic. The first approach relies on such estimators directly, either by
contrasting all individual estimatorswith the pooled one, or by performing pairwise comparisons; see, e.g., [8,28]. The second
approach is based on the distribution of the residuals or some of their characteristics. For instance, Dette and Neumeyer [8]
based their test statistic on a comparison of the variance of a pooled estimator with those of its individual components.
Pardo-Fernández et al. [18] compared empirical cumulative distribution functions of the residuals via Kolmogorov–Smirnov
and Cramér–von Mises type statistics while Pardo-Fernández et al. [17] considered empirical estimators of characteristic
functions of the residuals. Neumeyer and Dette [16] also suggested a test based on the comparison of marked empirical
processes of the residuals. Note that the abovementioned tests all depend on nonparametric estimators of regression curves.
In contrast, Delgado [7] used a weighted empirical process that avoids fitting regression curves in specific cases.

It is widely acknowledged that most existing test statistics converge to their weak limit at a very slow rate. Furthermore,
the asymptotic distribution of some tests involves features of the underlying data generating process and thus can only be
used in conjunction with re-sampling calibration procedures such as the bootstrap. In high-dimensional situations where
p → ∞, classical asymptotic results no longer hold. An obvious limitation is that it is often assumed that each ratio
ni/(n1 + · · · + np) converges to a bounded positive constant. Besides, high-dimensionality also brings non-negligible bias
accumulation when smoothing-based estimators are used. Moreover, re-sampling procedures are undesirable in that they
require extensive computational efforts.

In this work, we propose a new test tailored for high-dimensional settings. The test statistic avoids explicitly fitting the
regression curves and overcomes the noise accumulation problem. Its null distribution is asymptotically normal and free
of any unknown quantities. Hence, the asymptotic test is easy to use. Simulation studies show that it performs well for
configurations of dimension and sample sizes commonly encountered in practice.

The remainder of this article is organized as follows. In Section 2,wepresent our test statistic and its theoretical properties.
Section 3 provides some simulation results and a real data example as an illustration. Section 4 concludeswith some remarks,
and proofs are detailed in Appendix.

2. Methodology

2.1. Comparison of two regression curves

To motivate our test statistic, we first consider the comparison of two regression curves, i.e., p = 2. Our main idea stems
from a result due to Bierens (see Theorem 3.1.1 of [3]), which plays a critical role in the construction of our test statistic. This
result is recalled below.

Lemma 1. Let m1 and m2 be Borel measurable real-valued functions defined on Rd. Let X be a random vector in Rd such that
E|m1(X)| < ∞ and E|m2(X)| < ∞. For arbitrary t ∈ Rd, let φ1(t) = E{m1(X) exp(it⊤X)} and φ2(t) = E{m2(X) exp(it⊤X)}.
Then Pr{m1(X) = m2(X)} = 1 if and only if φ1(t) = φ2(t) for all t ∈ Rd.

For a complex-valued function f defined on Rd, the complex conjugate of f is denoted by f and ∥f ∥2
= f f . We define the

∥ · ∥w-norm as ∥f ∥2
w =

∫
Rd ∥f (t)∥2w(t)dt , where w is a positive weight function for which the integral exists. By Lemma 1,

the equality of two regression functions, in the sense that Pr{m1(X) = m2(X)} = 1, is equivalent to ∆ = ∥φ1 − φ2∥
2
w = 0.

Under the assumption that E|mi(X)| < ∞ for i ∈ {1, 2}, it follows from Fubini’s Theorem that

∆ = E{m1(X)m1(X ′)K (X − X ′)} + E{m2(X)m2(X ′)K (X − X ′)} − 2E{m1(X)m2(X ′)K (X − X ′)},

where X ′ is a copy of X and K (u) =
∫
Rd cos(t⊤u)w(t)dt . Therefore, if we further assume that E(εijεiℓ | Xij, Xiℓ) = 0 for every

i ∈ {1, . . . , p} and j, ℓ ∈ {1, . . . , ni} (or assume (A2) below holds), then we can use an unbiased estimate of ∆ to formulate
a test statistic, viz.

∆̂ =
1
P2
n1

n1∑
j=1

n1∑
ℓ=1,ℓ̸=j

Y1jY1ℓK (X1j − X1ℓ) +
1
P2
n2

n2∑
j=1

n2∑
ℓ=1,ℓ̸=j

Y2jY2ℓK (X2j − X2ℓ) −
2

n1n2

n1∑
j=1

n2∑
ℓ=1

Y1jY2ℓK (X1j − X2ℓ),

with an appropriate choice of weight function w, where P r
n = n(n − 1) · · · (n − r + 1).

2.2. Comparison of a large number of curves

In our asymptotic scheme, we assume that p → ∞ while all sample sizes are kept fixed. We propose to base a test of the
null hypothesis (1) on the statistic

Tp =
1

p(p − 1)

p∑
i=1

p∑
k=1,k̸=i

∆̂ik,
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