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a b s t r a c t

Capturing the dependence structure of multivariate extreme events is a major concern in
many fields involving themanagement of risks stemming frommultiple sources, e.g., port-
folio monitoring, insurance, environmental risk management and anomaly detection. One
convenient (nonparametric) characterization of extreme dependence in the framework of
multivariate Extreme Value Theory (EVT) is the angular measure, which provides direct
information about the probable ‘‘directions’’ of extremes, i.e., the relative contribution of
each feature/coordinate of the largest observations. Modeling the angularmeasure in high-
dimensional problems is a major challenge for the multivariate analysis of rare events.
The present paper proposes a novel methodology aiming at exhibiting a particular kind
of sparsity within the dependence structure of extremes. This is achieved by estimating
the amount of mass spread by the angular measure on representative sets of directions
corresponding to specific sub-cones of Rd

+
. This dimension reduction technique paves the

way towards scaling up existing multivariate EVT methods. Beyond a non-asymptotic
study providing a theoretical validity framework for our method, we propose as a direct
application a first anomaly detection algorithm based on multivariate EVT. This algorithm
builds a sparse normal profile of extreme behaviors, to be confronted with new (possibly
abnormal) extremeobservations. Illustrative experimental results provide strong empirical
evidence of the relevance of our approach.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Context: multivariate extreme values in large dimension

Extreme Value Theory (EVT in abbreviated form) provides a theoretical basis for modeling the tails of probability
distributions. In many applied fields where rare events may have a disastrous impact, such as finance, insurance, climate,
environmental risk management, network monitoring [23,43] or anomaly detection [8,31], the information carried by
extremes is crucial. In a multivariate context, the dependence structure of the joint tail is of particular interest, as it gives
access to probabilities of a joint excess above high thresholds or to multivariate quantile regions. Also, the distributional
structure of extremes indicates which components of a multivariate quantity may be simultaneously large while the others
remain small, which is a valuable piece of information for multi-factor risk assessment or detection of anomalies among
other non abnormal extreme data.

In a multivariate ‘‘Peak-Over-Threshold’’ setting, realizations of a d-dimensional random vector Y = (Y1, . . . , Yd) are
observed and the goal pursued is to learn the conditional distribution of excesses, Y | ∥Y∥ ≥ r , above some large threshold
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r > 0. The dependence structure of such excesses is described via the distribution of the directions formed by the most
extreme observations, the so-called angular measure, hereafter denoted by Φ . The latter is defined on the positive orthant
of the (d − 1)-dimensional hyper-sphere. To wit, for any region A on the unit sphere (a set of ‘‘directions’’), after suitable
standardization of the data (see Section 2), CΦ(A) ≃ Pr(∥Y∥

−1Y ∈ A | ∥Y∥ > r), where C is a normalizing constant. Some
probability mass may be spread on any sub-sphere of dimension k < d – the k-faces of an hyper-cube if we use the infinity
norm – which complexifies inference when d is large. To fix ideas, the presence of Φ-mass on a sub-sphere of the type
{max1≤i≤kxi = 1 : x1 > 0, . . . , xk > 0, xk+1 = · · · = xd = 0} indicates that the components Y1, . . . , Yk may be large
simultaneously, while the others are small. An extensive exposition of this multivariate extreme setting may be found, e.g.,
in [4,35].

Parametric or semi-parametric modeling and estimation of the structure of multivariate extremes is relatively well
documented in the statistical literature; see, e.g., [11,12,25,38] and the references therein. In a nonparametric setting, there
is also an abundant literature concerning consistency and asymptotic normality of estimators of functionals characterizing
the extreme dependence structure, e.g., extreme-value copulas or the stable tail dependence function (STDF); see [13,16,18,
21,26]. In many applications, it is nevertheless more convenient to work with the angular measure itself, as the latter gives
more direct information on the dependence structure and is able to reflect structural simplifying properties (e.g., sparsity as
detailed below)whichwould not appear in copulas or in the STDF. However, nonparametricmodeling of the angularmeasure
faces major difficulties, stemming from the potentially complex structure of the latter, especially in a high-dimensional
setting. Further, from a theoretical point of view, nonparametric estimation of the angular measure has mainly been studied
in the bivariate case, in [17] and [20], in an asymptotic framework (high-dimensional cases being discussed in [18]).

Scaling up multivariate EVT is a major challenge that one faces when confronted to high-dimensional learning tasks,
since most multivariate extreme value models have been designed to handle moderate dimensional problems (say, of
dimensionality d ≤ 10). For larger dimensions, simplifying modeling choices are needed, stipulating, e.g., that only some
pre-definite subgroups of componentsmay be concomitantly extremes, or, on the contrary, that all of themmust be; see, e.g.,
[45] or [38]. This curse of dimensionality can be explained, in the context of extreme values analysis, by the relative scarcity
of extreme data, the computational complexity of the estimation procedure and, in the parametric case, by the fact that
the dimension of the parameter space usually grows with that of the sample space. This calls for dimensionality reduction
devices adapted to multivariate extreme values.

In this paper, we consider situations where phenomenon (I) below occurs, and possibly phenomenon (II) as well. As
illustrated by the examples in Section 5, these can be encountered in several applications.

(I) Only a small number of groups of components may be concomitantly extreme, so that only a small number of hyper-
cubes (those corresponding to these subsets of indexes precisely) have non zero mass (the adjective small is relative
to the total number of groups 2d).

(II) Each of these groups contains a limited number of coordinates (compared to the original dimensionality), so that the
corresponding hyper-cubes with non zero mass have small dimension compared to d.

In order to gainmore insight into thenature of the conditions stated above andunderstandbetterwhyonemay reasonably
expect that one and/or the other are fulfilled in common practical situations, consider the three following stylized examples:
(i) there is a fully dependent asymptotic structure: one feature is large if and only if all the features are large; (ii) there is
an asymptotic independence structure: a feature can only be extreme on its own; (iii) there is a full dependence structure
pattern: given the fact that a feature j is large, the group of features being extreme can be any group of features containing
j. In situation (i), only the central hyper-cube corresponding to feature group {1, . . . , d} (i.e., the cartesian product (1, ∞]

d

for an appropriate standardization of the data) has non-zero mass. Thus phenomenon (I) is observed, but not phenomenon
(II) since this group is not small (the corresponding hyper-cube does not have a small dimension). In situation (ii), only the
d hyper-cubes corresponding to the singletons {1}, . . . , {d} have non-zero mass. As d ≪ 2d, phenomenon (I) occurs. As
1 ≪ d, so does phenomenon (II). Finally, in situation (iii), any hyper-cube has non-zero mass, so that neither phenomena
occurs. In many real-word cases, one expects to may be far from situation (iii), namely to be in the range of phenomenon
(I), allowing for a sparse description of the extremal dependence structure. Incidentally, we point out that, of course, this
notion of sparsity in the extremes is by no means the sole that can be considered but it offers obvious advantages regarding
interpretability.

The main purpose of this paper is to introduce a data-driven methodology for detecting this specific sparse structure
when it occurs and recovering the corresponding hyper-cubes, so as to possibly reduce the dimensionality of the problem
and thus to learn an interpretable representation of extreme behaviors. In case hypothesis (II) is not fulfilled, such a sparse
profile can still be learned, but loses the low-dimensional property of its supporting hyper-cubes.

One major issue is that real data generally do not concentrate on sub-spaces of zero Lebesgue measure. This is
circumvented by setting to zero any coordinate less than a threshold ϵ > 0, so that the corresponding ‘‘angle’’ is assigned to
a lower-dimensional hyper-cube.

The theoretical results stated in this paper build on the work of [27], where non-asymptotic bounds related to the
statistical performance of a nonparametric estimator of the STDF, another functional measure of the dependence structure
of extremes, are established. However, even in the case of a sparse angular measure, the support of the STDF would not be
so, since the latter functional is an integrated version of the former; see Eq. (2.2), Section 2. Also, in many applications, it is
more convenient to work with the angular measure. Indeed, it provides direct information about the probable directions of
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