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a b s t r a c t

We consider varying coefficient Cox models with high-dimensional covariates. We ap-
ply the group Lasso to these models and propose a variable selection procedure. Our
procedure can cope with simultaneous variable selection and structure identification for
high-dimensional varying coefficient models to find true semi-varying coefficient models
from them. We also derive an oracle inequality and closely examine restrictive eigenvalue
conditions. We focus on Cox models with time-varying coefficients. The theoretical results
on variable selection can be extended easily to some other important models which we
only mention briefly since they can be treated in the same way. The models considered
here are themost popular among structured nonparametric regressionmodels. The results
of numerical studies are also reported.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Cox’s proportional hazards model is one of the most popular and useful models for censored survival data analysis. Since
this model was originally proposed by Cox [9], it has been extended in many ways to deal with complicated situations or
to carry out more flexible analyses. In this paper, we consider varying coefficient Cox models and additive Cox models with
high-dimensional covariates. When the number of covariates is moderate, these models have already been investigated in
many papers, including Huang et al. [17], Cai and Sun [8], and Cai et al. [7].

We apply the group Lasso as described, e.g., in Lounici et al. [25] and Huang et al. [16], to varying coefficient models with
high-dimensional covariates to carry out variable selection and structure identification simultaneously. Although we focus
on time-varying coefficient models, our method can be applied to variable selection for other types of varying coefficient
models and additive models, for which we briefly mention how our procedures and the corresponding theoretical results
can be adapted.

Suppose that for each i ∈ {1, . . . , n}, we observe a censored survival time Ti and a high-dimensional random vector
Xi(t) = (Xi1(t), . . . , Xip(t))⊤ of covariates. More specifically, we have i.i.d. observations such that, for each i ∈ {1, . . . , n},
Ti = min(T0i, Ci), δi = 1(T0i ≤ Ci), Xi(t) is a p-dimensional covariate on the time interval [0, τ ], where T0i is an uncensored
survival time and Ci is a censoring time satisfying subject to the independent censoring mechanism described in Section 6.2
of Kalbfleisch and Prentice [20]. Hereafter we set τ = 1 for simplicity of presentation. Note that p can be very large compared
to n in this paper, e.g., p = O(ncp ) for a very large positive constant cp or p = O{exp(ncp )} for a sufficiently small positive
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constant cp. We assume that the standard setup for the Coxmodel holds as in Chapter 5 of [20] and that Ti orNi(t) = 1(t ≥ Ti)
has the following compensator Λi(t) with respect to a suitable filtration {Ft}:

dΛi(t) = Yi(t) exp{X⊤

i (t)g(t)}λ0(t)dt, (1)

where Yi(t) = 1(t ≤ Ti), g(t) = (g1(t), . . . , gp(t))⊤ is a vector of unknown functions on [0, 1], a⊤ denotes the transpose of a,
and λ0(t) is an unknown baseline hazard function; see Subsection 5.2.1 of [20] for an example of {Ft}. Then as in Chapter 5
of [20], Xi(t) is predictable andMi(t) = Ni(t) − Λi(t) is a martingale process with respect to {Ft}. In the original Cox model,
g(t) is a vector of unknown constants and we estimate this constant coefficient vector by maximizing the partial likelihood.

In this paper, we are interested in estimating g(t) in (1). Recently, with the fast development of data collection
technologies, (ultra) high-dimensional data are becomingmore frequent. In such high-dimensional data, usually only a small
fraction of covariates is relevant. However, we cannot directly apply standard or traditional estimating procedures to such
high-dimensional data. Many methods for variable selection have thus been developed, e.g., the SCAD and the Lasso. See
Bühlmann and van de Geer [6] and Hastie et al. [14] for excellent reviews of these procedures for variable selection; see also
Bickel et al. [2] and Zou [41] for the Lasso and the adaptive Lasso, respectively.

Cox models with constant coefficients have already been studied in high-dimensional contexts by Bradic et al. [3], who
studied the SCAD, and by Huang et al. [18], Kong and Nan [22], and Lemler [23], who considered the Lasso. Zhang and
Luo [36] proposed an adaptive Lasso estimator for the Cox model. The authors of [18] developed new ingenious techniques
to derive oracle inequalities. We will fully use their techniques to derive our theoretical results such as an oracle inequality.
Sun et al. [28] modified the Lasso penalty to incorporate side information. Wang et al. [32] proposed a hierarchical group
penalty. Some variable screening procedures have also been proposed in Zhao and Li [39] and Yang et al. [34], to name just a
few. Estimation of the baseline hazard function is considered in Guilloux et al. [13] in a high-dimensional setup. Amodel-free
screening procedure for censored data with high-dimensional covariates is proposed in Song et al. [27].

In this paper, we propose a group Lasso procedure to select relevant covariates and identify the covariates with constant
coefficients among the relevant covariates, namely the true semi-varying coefficient model from a much larger varying
coefficient model. We can achieve this goal by a suitable two-stage procedure consisting of the proposed group Lasso either
with an adaptively weighted Lasso procedure as in [15,33], or with the SCAD. In [33], the authors proposed an adaptive
Lasso procedure for structure identification but did not provide any theoretical support. Our procedure can be applied to the
varying coefficient model with an index variable Zi(t), viz.

dΛi(t) = Yi(t) exp[g0{Zi(t)} + X⊤

i (t)g{Zi(t)}]λ0(t)dt

and to the additive model

dΛi(t) = Yi(t) exp
[ p∑

j=1

gj{Xij(t)}
]
λ0(t)dt.

We will return to the latter models in Section 4.
Some authors considered the same problem by using the SCAD penalty; see, e.g., Lian et al. [24] and Zhang et al. [37]. They

proved the existence of a local optimizer satisfying the same convergence rate as ours. In contrast, we prove the existence of
the global solution with desirable properties. In Bradic and Song [4], the authors applied penalties similar to ours to additive
models and obtained theoretical results with possible model misspecifications. In our context, the convergence rates are
different from theirs; see Remark 1 in Section 3 for more details. We also carefully examined the restrictive eigenvalue (RE)
conditions. While some authors considered the L2 norm of the estimated second derivatives for additive models, we adopt
the orthogonal decomposition approach to structure identification. This is explained around (2) and (20) and in Appendix A.
We give some details on why we have adopted the orthogonal decomposition approach in Appendix C.

This paper is organized as follows. In Section 2, we describe our group Lasso procedure for time-varying coefficient
models. Then we present our theoretical results in Section 3. We mention the two other models in Section 4. The results
of numerical studies are reported in Section 5. The proofs of our theoretical results are postponed to Section 6 and
Section 7 concludes this paper. We collected useful properties of our basis functions and the proofs of technical lemmas
in Appendices A–D.

Before proceeding, we define some notation and symbols here. In this paper, C , C1, C2, . . . are positive generic constants
and their values change from line to line. For a vector a, |a|, |a|1, and |a|∞ mean the L2 norm, the L1 norm, and the sup norm,
respectively. For a function g on [0, 1], ∥g∥, ∥g∥1, and ∥g∥∞ stand for the L2 norm, the L1 norm, and the supnorm, respectively.
For a symmetric matrix A, we denote theminimum andmaximum eigenvalues by λmin(A) and λmax(A), respectively. Besides,
sign(a) is the sign of a real number a and an ∼ bn means there are positive constants C1 and C2 such that C1 < an/bn < C2.
We write S for the complement of a set S. For a function g and a constant c , g ≡ c and g ̸≡ c means that a function g is c
and it is not a constant c , respectively.

2. Group Lasso procedure

For each j ∈ {1, . . . , p}, we first decompose gj(t) into its constant and non-constant part, viz.

gj(t) = gcj + gnj(t), (2)
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