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a b s t r a c t

We consider the location-scale family of distributions, which contains many standard
lifetime distributions. We give conditions under which the largest order statistic of a set
of random variables with different/the same location as well as different/the same scale
parameters dominates that of another set of random variables with respect to various
stochastic orders. Along with general results, we consider important special cases, namely,
the Feller–Pareto, generalized Pareto, Burr, exponentiated Weibull, Power generalized
Weibull, generalized gamma, Half-normal and Fréchet distributions.
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1. Introduction and preliminaries

Order statistics play an important role in diverse areas of statistics, probability and other related fields; see [1,2,9] for
encyclopedic information on order statistics. Different order statistics can be used in different applications; for example, the
maximum is of interest in the study of floods and other meteorological phenomena while the minimum is often used in
reliability and survival analysis, etc.; see [11,12,14] for more discussion on this topic.

Let X1, . . . , Xn be a collection of random variables, and X1:n ≤ · · · ≤ Xn:n be their corresponding order statistics. For
each k ∈ {1, . . . , n}, Xk:n is called the kth order statistic. If the variables X1, . . . , Xn represent the lifetimes of components
of a system, say, then the reliability (survival) function of a k-out-of-n system formed by X1, . . . , Xn is the same as that of
Xn−k+1:n. Thus, to study a k-out-of-n system, it is sufficient to deal with the (n − k + 1)th order statistic, and vice versa.
The theory and applications of order statistics from homogeneous samples have been well studied in the literature; see [9]
and references therein. However, due to mathematical complexity, much less attention was paid to the order statistics from
heterogeneous samples, and this topic needs a thorough investigation.

Stochastic comparisons between different order statistics from homogeneous/ heterogeneous samples have been ex-
plored by different researchers in the last few decades; see [4] for a review. However, most results in the literature are
obtained with respect to specific distributions, e.g., exponential, gamma, generalized exponential; see [3,6,13,17,31,33,34]
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and references therein.Much fewer studies have been reportedwith respect to general families of distributions, e.g., location-
scale families or proportional hazard rates families; see [15,20,26,27] and references therein. Special attention has been
paid to the location-scale family as it contains most of the popular lifetime distributions. Results for the scale family of
distributions can be found in [10,15,16,19,20]. However, stochastic comparisons of order statistics when location and scale
parameters are different for different sets of random variables were not considered in the literature so far. This is the major
challenge to be addressed in the present work.

The foregoing refers both to the largest and the smallest order statistics. Due to analytical complexity and substantial
differences in the corresponding proofs and reasoning, it is unrealistic to combine these two cases in a single paper. Therefore,
in the current paper, we will focus on comparisons between maximum order statistics, whereas the study for the minimum
order statistics will be reported separately.

Specifically, in this paper, we compare stochastically two maximum order statistics formed from two different sets of
randomvariables having different/the same location and scale parameters. General results are obtained for the location-scale
family of distributions. In the case of the location-scale families, we consider a number of well known lifetime distributions.
For each type of stochastic comparison considered, we present important practical results showing for which baseline
distributions (and the corresponding admissible regions of parameters) our comparisons hold. A number of intermediate
results of independent interest are needed along the way.

Thus, our paper develops a theory of stochastic comparisons for two maximum order statistics that are formed from
two different sets of random variables having different/the same location as well as different/the same scale parameters.
We believe that it is meaningful from a theoretical and a methodological point of view; in particular, it unifies some of the
existing literature. Before proceeding, we provide below some notation and basic definitions.

1.1. Preliminaries

Given an absolutely continuous random variable Y , we denote its probability density function (pdf) by fY , its cumulative
distribution function (cdf) by FY , and its reversed hazard rate function by r̃Y . The survival function of Y is written as
F̄Y = 1 − FY . We denote the set of real numbers by R, and the set of positive real numbers by R+.

A random variable X is said to follow the location-scale family, written as X ∼ LS(λ, θ ), if its distribution function can
be written, for all x > λ, by

FX (x; λ, θ ) = F
(
x − λ

θ

)
,

where λ ∈ R and θ > 0 are the location and the scale parameters, respectively, and F is the baseline distribution function;
see [21]. We also denote the pdf and the reversed hazard rate function of the baseline distribution by f and r̃ , respectively. It
is well known that incorporating the location and the scale parameters in a distribution makes it more flexible and general
as far asmodeling and data analysis are concerned. Note thatmanywell known distributions could be considered as baseline
distributions, for example:

(a) The Feller–Pareto distribution, denoted FP(α, β, γ ), with pdf is given by

f (x) =
1

γ B(α, β)
xβ/γ−1(1 + x1/γ )−(α+β), x > 0, α > 0, β > 0, γ > 0,

where B is the Beta function; see [24]. Special cases include the Pareto II (β = γ = 1), Pareto III (α = β = 1) and
Pareto IV (β = 1) distributions, the Transformed Beta (γ = 1/γ ∗) and Burr distribution (β = 1, γ = 1/c).

(b) The Generalized Pareto distribution, denoted GP(ξ ), with cdf given by F (x) = 1 − (1 + ξx)−1/ξ , x > 0, ξ > 0; see [8].
It includes the exponential distribution (ξ → 0) as a special case.

(c) The Burr distribution, denoted BU(c, k), with cdf given by F (x) = 1 − (1 + xc)−k, x > 0, c > 0, k > 0; see [7]. It
includes the Pareto II (c = 1) and log–logistic (k = 1) distributions as special cases.

(d) The Exponentiated Weibull distribution, denoted EW(α, β), with cdf given by F (x) = (1 − e−xα )β , x > 0, α > 0,
β > 0; see [23]. It includes the exponential (α = β = 1), Weibull (β = 1) and exponentiated exponential (α = 1)
distributions as special cases.

(e) The Power-generalized Weibull distribution, denoted PGW(c, k), with cdf given by F (x) = 1 − exp{1 − (1 + xc)1/k},
x > 0, c > 0, k > 0; see [15]. It includes the Weibull (k = 1) and exponential (c = k = 1) distributions as special
cases.

(f) The Generalized gamma distribution, denoted GG(p, q), with pdf given by f (x) = pxq−1e−xp/Γ (q/p), x > 0, p > 0,
q > 0, where Γ is Euler’s gamma function; see [15]. It includes the exponential (p = q = 1), Weibull (p = q) and
gamma (p = 1) distributions as special cases.

(g) The Half-normal distribution with pdf given by f (x) =
√
2/πe−x2/2, x > 0.

(h) The Fréchet distribution, denoted FR(α), with cdf given by F (x) = exp(−x−α), x > 0, α > 0.
(i) The Pareto distribution, denoted PD(α), with cdf given by F (x) = 1 − x−α , x ≥ 1, α > 0.
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