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a b s t r a c t

We consider a one-dimensional Gaussian process having exponential covariance function.
Under fixed-domain asymptotics, we prove the strong consistency and asymptotic nor-
mality of a cross validation estimator of the microergodic covariance parameter. In this
setting, Ying (1991) proved the same asymptotic properties for the maximum likelihood
estimator. Our proof includes several original or more involved components, compared to
that of Ying. Also, while the asymptotic variance of maximum likelihood does not depend
on the triangular array of observation points under consideration, that of cross validation
does, and is shown to be lower and upper bounded. The lower bound coincides with the
asymptotic variance of maximum likelihood. We provide examples of triangular arrays of
observation points achieving the lower and upper bounds. We illustrate our asymptotic
results with simulations, and provide extensions to the case of an unknownmean function.
To our knowledge, this work constitutes the first fixed-domain asymptotic analysis of cross
validation.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Kriging [28,35] consists in inferring the values of a Gaussian random field given observations at a finite set of observation
points. It has become a popular method for a large range of applications, such as geostatistics [25], numerical code
approximation [8,29,30] and calibration [9,27] or global optimization [20].

Before Kriging can be applied, a covariance functionmust be chosen. Themost commonpractice is to estimate statistically
the covariance function from a set of observations of the Gaussian process and to plug the estimate in the Kriging
equations [35, Chap. 6.8]. Usually, it is assumed that the covariance function belongs to a given parametric family; see [1] for
a review of classical families. In this case, the estimation boils down to estimating the corresponding covariance parameters.
For covariance parameter estimation, the method of maximum likelihood (ML) is the most frequently studied and used,
while cross validation (CV) is an alternative technique [5,36,43]. CV has been shown to have attractive properties, compared
to ML, when the parametric family of covariance functions is misspecified [5,7].

There is a fair amount of literature on the asymptotic properties of ML. In this regard, the two main frameworks are
increasing-domain and fixed-domain asymptotics [35, p. 62]. Under increasing-domain asymptotics, the average density
of observation points is bounded, so that the infinite sequence of observation points is unbounded. Under fixed-domain
asymptotics, this sequence is dense in a bounded domain.

Consider first increasing-domain asymptotics. Generally speaking, for all (identifiable) covariance parameters, the ML
estimator is consistent and asymptotically normal under somemild regularity conditions. The asymptotic covariancematrix
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is equal to the inverse of the (asymptotic) Fisher information matrix. This result was first shown in [24], and then extended
in different directions in [6,12,13,16,31].

The situation is significantly different under fixed-domain asymptotics. Indeed, two types of covariance parameters can
be distinguished: microergodic and non-microergodic parameters [18,35]. A covariance parameter is microergodic if, for
two different values of it, the two corresponding Gaussian measures are orthogonal; see [18,35]. It is non-microergodic if,
even for two different values of it, the two corresponding Gaussian measures are equivalent. Non-microergodic parameters
cannot be estimated consistently, but have an asymptotically negligible impact on prediction [32–34,42]. However, it is
at least possible to consistently estimate microergodic covariance parameters, and misspecifying them can have a strong
negative impact on prediction.

Under fixed-domain asymptotics, there exist results indicating which covariance parameters are microergodic, and
providing the asymptotic properties of the corresponding ML estimator. Most of these available results are specific to
particular covariance models. In dimension d = 1 when the covariance model is exponential, only a reparameterized
quantity obtained from the variance and scale parameters is microergodic. It is shown in [40] that the ML estimator of this
microergodic parameter is strongly consistent and asymptotically normal. These results are extended in [11], by taking into
account measurement errors, and in [10], by taking into account both measurement errors and an unknownmean function.
When d > 1 and for a separable exponential covariance function, all the covariance parameters are microergodic, and the
asymptotic normality of the ML estimator is proved in [41]. Other results in this case are also given in [2,37]. Consistency of
ML is shown as well in [23] for the scale parameters of the Gaussian covariance function and in [22] for all the covariance
parameters of the separable Matérn 3/2 covariance function. Finally, for the entire isotropic Matérn class of covariance
functions, all parameters are microergodic for d > 4 [3], and only reparameterized parameters obtained from the scale and
variance are microergodic for d ⩽ 3; see [42]. In [21], the asymptotic normality of the ML estimators for these microergodic
parameters is proved, from previous results in [14] and [39]. Finally we remark that, beyond ML, quadratic variation-based
estimators have also been extensively studied, under fixed-domain asymptotics; see for instance [19].

In contrast to ML, CV has received less attention from a theoretical point of view. Under increasing-domain asymptotics,
the consistency and asymptotic normality of a CV estimator are proved in [6]. Also, under increasing-domain asymptotics,
it is shown in [7] that this CV estimator asymptotically minimizes the integrated square prediction error. To the best of our
knowledge, no fixed-domain asymptotic analysis of CV exists in the literature.

In this paper, we provide a first fixed-domain asymptotic analysis of the CV estimator minimizing the CV logarithmic
score, see Eq. (5.11) in [28] and [43]. We focus on the case of the one-dimensional exponential covariance function, which
was historically the first covariance function for which the asymptotic properties of ML were derived [40]. This covariance
function is particularly amenable to theoretical analysis, as itsMarkovian property yields an explicit (matrix-free) expression
of the likelihood function. It turns out that the CV logarithmic score can also be expressed in amatrix-free form,which enables
us to prove the strong consistency and asymptotic normality of the corresponding CV estimator.We follow the same general
proof architecture as in [40] for ML, but our proof, and the nature of our results, contain several new elements.

In terms of proofs, the random CV logarithmic score, and its derivatives, have more complicated expressions than for
ML. This is because the CV logarithm score is based on the conditional distributions of the observations, from both their
nearest left and right neighbors, while the likelihood function is solely based on the nearest left neighbors; see Lemma 1 and
Lemma 1 in [40] for details. As a consequence, the computations are more involved, and some other tools than in [40] are
needed. In particular, many of our asymptotic approximations rely on Taylor expansions of functions of several variables,
where each variable is an interpoint distance going to zero; see the proofs for details. In contrast, only Taylor approximations
with one variable are needed in [40]. In addition, we use central limit theorems for dependent random variables, while only
independent variables need to be considered in [40].

The nature of our asymptotic normality result also differs from that in [40]. In this reference, the asymptotic variance
does not depend on the triangular array of observation points. On the contrary, in our case, different triangular arrays of
observation points can yield different asymptotic variances. We exhibit a lower and an upper bound for these asymptotic
variances, and provide examples of triangular arrays reaching them. The lower bound is in fact equal to the asymptotic
variance of ML in [40]. Interestingly, the triangular array given by equispaced observation points attains neither the lower
nor the upper bound. It is also pointed out in [6] that equispaced observation points need not provide the smallest asymptotic
variance for covariance parameter estimation.

Finally, the fact that the asymptotic variance is larger for CV than for ML is a standard finding in the well-specified case
considered here, where the covariance function of the Gaussian process does belong to the parametric family of covariance
functions under consideration. In contrast, as mentioned above, CV has attractive properties compared to ML when this
well-specified case does not hold [5,7].

The rest of the paper is organized as follows. In Section 2,we present inmore detail the setting and the CV estimator under
consideration. In Section 3, we give our strong consistency result for this estimator. In Section 4, we provide the asymptotic
normality result, together with the analysis of the asymptotic variance. In Section 5, we present numerical experiments,
illustrating our theoretical findings. In Section 6, we extend the results of Sections 3 and 4 to the case of an unknown mean
function. In Section 7, we give a few concluding remarks. All the proofs are postponed to Section 8.
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