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a b s t r a c t

Liouville copulas introduced in McNeil and Nešlehová (2010) are asymmetric generaliza-
tions of the ubiquitous Archimedean copula class. They are the dependence structures of
scalemixtures of Dirichlet distributions, also called Liouville distributions. In this paper, the
limiting extreme-value attractors of Liouville copulas and of their survival counterparts
are derived. The limiting max-stable models, termed here the scaled extremal Dirichlet,
are new and encompass several existing classes of multivariate max-stable distributions,
including the logistic, negative logistic and extremal Dirichlet. As shown herein, the stable
tail dependence function and angular density of the scaled extremal Dirichlet model have
a tractable form, which in turn leads to a simple de Haan representation. The latter is used
to design efficient algorithms for unconditional simulation based on the work of Dombry
et al. (2016) and to derive tractable formulas formaximum-likelihood inference. The scaled
extremal Dirichlet model is illustrated on river flow data of the river Isar in southern
Germany.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Copula models play an important role in the analysis of multivariate data and find applications in many areas, including
biostatistics, environmental sciences, finance, insurance, and risk management. The popularity of copulas is rooted in the
decomposition of Sklar [39], which is at the heart of flexible statistical models and variousmeasures, concepts and orderings
of dependence between random variables. According to Sklar’s result, the distribution function of any random vector
X = (X1, . . . , Xd) with continuous univariate margins F1, . . . , Fd satisfies, for any x1, . . . , xd ∈ R,

Pr(X1 ≤ x1, . . ., Xd ≤ xd) = C{F1(x1), . . ., Fd(xd)},

for a unique copula C , i.e., a distribution function on [0, 1]d whose univariate margins are standard uniform. Alternatively,
Sklar’s decomposition also holds for survival functions, i.e., for any x1, . . . , xd ∈ R,

Pr(X1 > x1, . . ., Xd > xd) = Ĉ{F̄1(x1), . . ., F̄d(xd)},

where F̄1, . . . , F̄d are the marginal survival functions and Ĉ is the survival copula of X , related to the copula of X as follows.
If U is a random vector distributed as the copula C of X , Ĉ is the distribution function of 1− U .

In riskmanagement applications, the extremal behavior of copulas is of particular interest, as it describes the dependence
between extreme events and consequently the value of riskmeasures at high levels. Our purpose is to study the extremal be-
havior of Liouville copulas. The latter are defined as the survival copulas of Liouville distributions [14,17,38], i.e., distributions
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of random vectors of the form RDα, where R is a strictly positive random variable independent of the Dirichlet random vector
Dα = (D1, . . . ,Dd) with parameter vector α = (α1, . . . , αd). Liouville copulas were proposed by McNeil and Nešlehová [31]
in order to extend the widely used class of Archimedean copulas and create dependence structures that are not necessarily
exchangeable. The latter property means that for any u1, . . . , ud ∈ [0, 1] and any permutation π of the integers 1, . . . , d,
C(u1, . . . , ud) = C(uπ (1), . . . , uπ (d)). When α = 1d ≡ (1, . . . , 1), Dα = D1d is uniformly distributed on the unit simplex

Sd = {x ∈ [0, 1]d : x1 + · · · + xd = 1}. (1)

In this special case, one recovers Archimedean copulas. Indeed, according to [30], the latter are the survival copulas of random
vectors RD1d , where R is a strictly positive random variable independent of D1d . When α ̸= 1d, the survival copula of RDα is
not Archimedean anymore. It is also no longer exchangeable, unless α1 = · · · = αd.

In this article, we determine the extremal attractor of a Liouville copula and of its survival counterpart. As a by-product,
we also obtain the lower and upper tail dependence coefficients of Liouville copulas that quantify the strength of dependence
at extreme levels [25]. These results are complementary to [21], where the upper tail order functions of a Liouville copula
and its density are derived when α1 = · · · = αd, and to [20], where the extremal attractor of RDα is derived when R is light-
tailed. The extremal attractors of Liouville copulas are interesting in their own right. Because non-exchangeability of Liouville
copulas carries over to their extremal limits, the latter can be used to model the dependence between extreme risks in the
presence of causality relationships [15]. The limiting extreme-valuemodels can be embedded in a single family, termed here
the scaled extremal Dirichlet, whose members are new, non-exchangeable generalizations of the logistic, negative logistic,
and Coles–Tawn extremal Dirichletmodels given in [7].We examine the scaled extremal Dirichletmodel in detail and derive
its de Haan spectral representation. The latter is simple and leads to feasible stochastic simulation algorithms and tractable
formulas for likelihood-based inference.

The article is organized as follows. The extremal behavior of the univariate margins of Liouville distributions is first
studied in Section 2. The extremal attractors of Liouville copulas and their survival counterparts are then derived in Section 3.
When α is integer-valued, the results of [27,31] lead to closed-form expressions for the limiting stable tail dependence
functions, as shown in Section 4. Section 5 is devoted to a detailed study of the scaled extremal Dirichlet model. In Section 6,
the de Haan representation is derived and used for stochastic simulation. Estimation is investigated in Section 7, where
expressions for the censored likelihood and the gradient score are also given. An illustrative data analysis of river flow of the
river Isar is presented in Section 8, and the paper is concluded by a discussion in Section 9. Lengthy proofs are relegated to
the Appendices.

In what follows, vectors in Rd are denoted by boldface letters, x = (x1, . . . , xd); 0d and 1d refer to the vectors (0, . . . 0)
and (1, . . . , 1) in Rd, respectively. Binary operations such as x+ y or a · x, xa are understood as component-wise operations.
∥ · ∥ stands for the ℓ1-norm, viz. ∥x∥ = |x1| + · · · + |xd|, y for statistical independence. For any x, y ∈ R, let x∧ y = min(x, y)
and x ∨ y = max(x, y). The Dirac delta function Iij is 1 if i = j and zero otherwise. Finally, Rd

+
is the positive orthant [0,∞)d

and for any x ∈ R, x+ denotes the positive part of x, max(0, x).

2. Marginal extremal behavior

A Liouville random vector X = RDα is a scale mixture of a Dirichlet random vector Dα = (D1, . . . ,Dd) with parameters
α = (α1, . . . , αd) > 0d. In what follows, R is referred to as the radial variable of X and ᾱ denotes the sum of the Dirichlet
parameters, viz. ᾱ = ∥α∥ = α1+· · ·+αd. Recall that Dα has the same distribution as Z/∥Z∥, where Z1 ∼ G(α1, 1), . . . , Zd ∼
G(αd, 1) are independent Gamma variables with scaling parameter 1. The margins of X are thus scale mixtures of Beta
distributions, i.e., for each i ∈ {1, . . . , d}, Xi = RDi with Di ∼ B(αi, ᾱ − αi).

As a first step towards the extremal behavior of Liouville copulas, this section is devoted to the extreme-value properties
of the univariate margins of the vectors X and 1/X , where X is a Liouville random vector with parameters α and a strictly
positive radial part R, i.e., such that Pr(R ≤ 0) = 0. To this end, recall that a univariate random variable X with distribution
function F is in the maximum domain of attraction of a non-degenerate distribution F0, denoted F ∈M(F0) or X ∈M(F0), if
and only if there exist sequences of reals (an) and (bn) with an > 0, such that, for any x ∈ R,

lim
n→∞

F n(anx+ bn) = F0(x).

By the Fisher–Tippett Theorem, F0 must be, up to location and scale, either the Fréchet (Φρ), the Gumbel (Λ) or the Weibull
distribution (Ψρ) with parameter ρ > 0. Further recall that a measurable function f : R+ → R+ is called regularly varying
with index ρ ∈ (−∞,∞), denoted f ∈ Rρ , if for any x > 0, f (tx)/f (t)→ xρ as t →∞. If ρ = 0, f is called slowly varying.
For more details and conditions for F ∈M(F0), see, e.g., [12,35].

Because the univariate margins of X are scale mixtures of Beta distributions, their extremal behavior, detailed in
Proposition 1, follows directly from Theorems 4.1, 4.4. and 4.5 in [19].

Proposition 1. Let X = RDα be a Liouville random vector with parametersα = (α1, . . . , αd) and a strictly positive radial variable
R, i.e., Pr(R ≤ 0) = 0. Then the following statements hold for any ρ > 0:
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