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a b s t r a c t

This research contributes a new methodological advance on bivariate independence hy-
pothesis testing. It is based on the property that under independence, every quantile of
Y given X = x is constant. Apart from the asymptotic distributions of the test statistic
under the null and alternative hypotheses, thiswork establishes their first order Edgeworth
expansion. This is used to construct a bandwidth selection rule, designed to maximize
power while the size is controlled by a given significance level. Finally, numerical evidence
is given on the test’s benefits against standard independence tests, frequently encountered
in the literature.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Independence of bivariate random vectors is a concept encountered quite frequently in statistics either as an assumption
or for inferential purposes. Naturally many hypothesis tests have been proposed for its investigation in a wide range of
contexts, see Tjøstheim [22] for an account of important contributions. Consistent independence tests in the general setting
of mathematical statistics have been developed in the past by Hoeffding [13], Blum et al. [2], Feuerverger [5], Einmahl and
McKeauge [4], and Genest and Rémillard [9]. They all use as basis the necessary and sufficient condition that for a bivariate
random vector with independent components, the Cramér–von Mises distance between the joint and the product of the
marginal distributions is zero. The proposals of Rosenblatt [20] and Rosenblatt and Wahlen [21] were based on a density
version of the same condition, weighted by an appropriate function.

The applicability of most of the above tests is still discussed in the literature. In Mudholkar and Wilding [16] Section 3,
it is acknowledged that although the tests of Hoeffding [13] and Blum et al. [2] perform very well, use of their asymptotic
distribution for finite sample sizes can lead to large discrepancies. Rosenblatt [20] and Feuerverger [5] report that density-
based tests are less powerful compared to tests based on sample distribution functions. In contrast, the test of Genest
and Rémillard [9], available in the R package copula, works perfectly well in finite samples. As all of the above proposals,
however, it does not offer an inherent way to control the power and size of the test simultaneously.

The present research develops a test of independence which is feasible to implement even for finite samples and avoids
the above difficulties. As a point of origin it uses the works of Chan [3] and Patil and Sengupta [19] who instead of the
Cramér–von Mises distance used the idea that for a bivariate population (X, Y ) independence is implied if every regression
quantile of Y versus X = x is constant. The test statistic results by repeated, for each p ∈ (0, 1), sign tests for the constancy of
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the regression quantile p in the neighborhood of every design point, adding the regression results all together and integrating
over p. By construction, small test statistic values indicate independence between X and Y ; on the contrary large positive
values favor the alternative hypothesis of dependence. Patil and Bagkavos [18] compared its power against the tests of Blum
et al. [2] and Hoeffding [13]. This preliminary research indicated that the test is more sensitive in detecting dependence in
low correlation levels and through the bandwidth selection mechanism it can be configured to control power and size.

What ismissing from the literature is a quantification of the test’s asymptotic distribution aswell as a bandwidth selection
rule so as to use the procedure optimally in practice. The present research addresses both issues. It starts by providing the
asymptotic distribution of the proposed test statistic under both the null and alternative hypotheses. These are interesting on
their own right however their first order Edgeworth expansion with leading terms as functions of the bandwidth parameter
are better suited for developing a bandwidth selection rule for finite samples. For this reason, these are established following
the work of Gao and Gijbels [6], and used to develop a closed form bandwidth expression which maximizes power while at
the same timekeeps the size constant based on a given significance level. This last feature is alsomissing from the literature as
existing independence tests generally do not keep size constant as power grows. Further, the obtained smoothing parameter
is optimal irrespectively of whether we are under the null or alternative hypotheses.

The reasoning from which the test arises is given in Section 2, together with the specific form of the null and alternative
hypotheses, an ideal (infeasible in practice) version of the test statistic and its data driven counterpart. Its asymptotic
properties are addressed in Section 3. Bandwidth selection is treated in Section 5. Finally, performance of the proposed
test in practice is given in Section 6.

It has to be noted that the test developed in Zheng [26], independently of Patil and Sengupta [19], can be viewed as
related to the present test even though its construction is based on cumulative distribution functions. However Zheng [26]
did not discuss bandwidth selection or practical performance and implementation of his test and thus the corresponding part
of the present article together with its background theory is novel. Still, the present work can be viewed as a continuation
of the work in Zheng [26] under the present construction scheme. Even though investigation of the equivalence of the two
tests is beyond the scope of this article, Section 3 provides insights on the connection between the two tests.

2. Motivation and test statistic

Let (X, Y ) ∈ R × R be a random pair, assumed to have a joint probability density function (p.d.f.) f with cumulative
distribution function (c.d.f.) F . Denote with FY (y | x) the marginal c.d.f. of Y conditional on X = x and with F−1

Y (y | x)
its inverse. The marginal (unconditional) c.d.f. of Y is denoted by FY and by F−1

Y its inverse. Obviously under independence
between X and Y , FY (y | x) = FY (y) and F−1

Y (y | x) = F−1
Y (y) for every (x, y) ∈ RX × RY where RX ,RY denote the support of

X and Y , respectively.
The basis of the proposed test is that under independence, for every quantile p ∈ (0, 1), we have F−1

Y (p | x) = cp, where
cp does not vary with x. That is

F−1
Y (p | x) = F−1

Y (p) = cp. (1)

For a fixed p, if onewere to express thismodel in terms of observations Yi it wouldmean Yi = mp(xi)+εi for all i ∈ {1, . . . , n},
wheremp(xi) is the pth quantile of Y given X = xi and error εi is such that its pth quantile is zero; see also Basset and Koenker
[1]. That is, for a fixed p,

F−1
Y (p | xi) = mp(xi) + F−1

ε (p) = c(p, xi), (2)

and when Y and X are independent, c(p, xi) = cp = cp + F−1
ε (p) which does not vary with x. For brevity henceforth we will

refer to pth regression quantile simply asm(x) instead ofmp(x).
Now, let ψp(u) = sign(u) + 2p − 1 and let (X1, Y1) and (X2, Y2) be two independent random vectors with common p.d.f.

f . Then observe that for every fixed p ∈ (0, 1), under independence,

gp(x) = E
[
ψp
{
Y1 − F−1

Y (p)
}

| X1 = x
]

= 0 (3)

and thus for every p ∈ (0, 1) with Kh(X1, X2) = h−1K {(X1 − X2)/h}, where K is a kernel function, we have

J(p) = E
[
Kh(X1, X2)ψp

{
Y2 − F−1

Y (p)
}
gp(X1)

]
= 0

and consequently

J =

∫ 1

0
J(p)dp = 0. (4)

On the contrary, under dependence between X and Y we have

gp(X1) = E
[
ψp
{
Y1 − F−1

Y (p)
}

| X1
]

̸= 0 a.s.
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