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1. Introduction

We consider observations which are consecutive curves over a fixed time interval within the field of functional data
analysis (FDA). In this paper curves are representations of a functional linear process. The data generating process is a time
series X = (Xj)nez Where each X, is a random element X,(t), t € [0, 1], of a Hilbert space, often the space of square
integrable functions on [0, 1].

Several books contain a mathematical or statistical treatment of dependent functional data as Bosq [4], Horvath and
Kokoszka [14], and Bosq and Blanke [7]. The main source of our paper is the book Bosq [4] on linear processes in
function spaces, which gives the most general mathematical treatment of linear dependence in functional data, developing
estimation, limit theorems and prediction for functional autoregressive processes. In Hormann and Kokoszka [13] the
authors develop limit theorems for the larger class of weakly dependent functional processes. More recently, Hormann
et al. [12] and Panaretros and Tavakoli [22] contribute to frequency domain methods of functional time series.

Solving the prediction equations in function spaces is problematic and research to-date has mainly considered first order
autoregressive models. Contributions to functional prediction go hand in hand with an estimation method for the autore-
gressive parameter operator. Bosq [4] suggests a Yule-Walker type moment estimator, spline approximation is applied in
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Besse and Cardot [3], and Kargin and Onatski [ 17] propose a predictive factor method where the principal components are
replaced by directions which may be more relevant for prediction.

When moving away from the autoregressive process, results on prediction of functional time series become sparse. An
interesting theory for the prediction of general functional linear processes is developed in Bosq [6]. Necessary and sufficient
conditions are derived for the best linear predictor to take the form ¢, (Xy, ..., X,) with ¢, linear and bounded. However,
due to the infinite-dimensionality of function spaces, boundedness of ¢, cannot be guaranteed. Consequently, most results,
though interesting from a theoretical point of view, are not suitable for application.

More practical results are given for example in Antoniadis et al. [ 1], where prediction is performed non-parametrically
with a functional kernel regression technique, or in Aue et al. [2], Hyndman and Shang [16] and Klepsch et al. [18], where
the dimensionality of the prediction problem is reduced via functional principal component analysis. In a multivariate
setting, the Innovations Algorithm proposed in Brockwell and Davis [8] gives a robust prediction method for linear processes.
However, as often in functional data analysis, the non-invertibility of covariance operators prevents an ad-hoc generalization
of the Innovations Algorithm to functional linear processes.

We suggest a computationally feasible linear prediction method extending the Innovations Algorithm to the functional
setting. For a functional linear process (X,)ez With values in a Hilbert space H and with innovation process (&,)nez Our

goal is the construction of a linear predictor X, based on Xy, ..., X, such that X, is both computationally tractable and
consistent. In other words, we want to find a bounded linear mapping ¢, with X, 1 = ¢,(X1, . . ., X;,) such that the statistical
prediction error converges to 0 for increasing sample size; i.e.,
lim E[|Xy41 — Xot1]* = Elleoll. (1.1)
n—oo

To achieve convergence in (1.1) we work with finite-dimensional projections of the functional process, similarly as in
Aue et al. [2] and Klepsch et al. [18]. We start with a representation of the functional linear model in terms of an arbitrary
orthonormal basis of the Hilbert space. We then focus on a representation of the model based on only finitely many
basis functions. An intuitive choice for the orthonormal basis consists of the eigenfunctions of the covariance operator of
the process. Taking the eigenfunctions corresponding to the D largest eigenvalues results in a truncated Karhunen-Loéve
representation, and guarantees to capture most of the variance of the process (see [2]). Other applications may call for a
different choice.

Though the idea of finite-dimensional projections is not new, our approach differs significantly from existing ones.
Previous approaches consider the innovations of the projected process as the projection of the innovation of the original
functional process. Though this may be sufficient in practice, it is in general not theoretically accurate.

The Wold decomposition enables us to work with the exact dynamics of the projected process, which then allows us
to derive precise asymptotic results. The task set for this paper is of a purely predictive nature: we assume knowing the
dependence structure and do not perform model selection or covariance estimation of the functional process. This will be
the topic of a subsequent paper.

The truncated process (Xp.n)nez based on D basis functions is called subprocess. We show that every subprocess of a
stationary (and invertible) functional process is again stationary (and invertible). We then use an isometric isomorphy to a
D-dimensional vector process to compute the best linear predictor of (Xp n)nez by the Multivariate Innovations Algorithm
(see [8]).

As a special example we investigate the functional moving average process of finite order. We prove that every subprocess
is again a functional moving average process of same order or less. Moreover, for this process the Innovations Algorithm
simplifies. Invertibility is a natural assumption in the context of prediction (see Brockwell and Davis [8], Section 5.5, and Nsiri
and Roy [21]), and we require it when proving limit results. The theoretical results on the structure of (Xp ,)nez enable us to
quantify the prediction error in (1.1). As expected, it can be decomposed in two terms, one due to the dimension reduction,
and the other due to the statistical prediction error of the D-dimensional model. However, the goal of consistency asin (1.1)
is not satisfied, as the error due to dimension reduction does not depend on the sample size.

Finally, in order to satisfy (1.1), we propose a modified version of the Innovations Algorithm. The idea is to increase D
together with the sample size. Hence the iterations of our modified Innovations Algorithm are based on increasing subspaces.
Here we focus on the eigenfunctions of the covariance operator of X as orthonormal basis of the function space.

Our main result states that the prediction error is a combination of two tail sums, one involving operators of the inverse
representation of the process, and the other the eigenvalues of the covariance operator. We obtain a computationally
tractable functional linear predictor for stationary invertible functional linear processes. As the sample size tends to infinity
the predictor satisfies (1.1) with a rate depending on the eigenvalues of the covariance operator and of the spectral density
operator.

Our paper is organized as follows. After summarizing prerequisites of functional time series in Section 2, we recall in
Section 3 the framework of prediction in infinite-dimensional Hilbert spaces, mostly based on the work of Bosq (see [4-6]).
Here we also clarify the difficulties of linear prediction in infinite-dimensional function spaces. In Section 4 we propose an
Innovations Algorithm based on a finite-dimensional subprocess of X. The predictor proposed in Section 4, though quite
general, does not satisfy (1.1). Hence, in Section 5 we project the process on a finite-dimensional subspace spanned by the
eigenfunctions of the covariance operator of X, and formulate the prediction problem in such a way that the dimension of
the subprocess increases with the sample size. A modification of the Innovations Algorithm then yields a predictor which
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