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a b s t r a c t

The objective of this paper is two-fold: to propose efficient estimation of multiple quantile
regression analysis of longitudinal data and to develop a new test for the homogeneity
of independent variable effects across multiple quantiles. Estimating multiple regression
quantile coefficients simultaneously entails accommodating both association among the
multiple quantiles and association among the repeated measurements of the response
within subjects. We formulate simultaneous estimating equations using basis matrix
expansion which accounts for the above-mentioned associations. The empirical likelihood
method is adopted to estimatemultiple regression quantile coefficients. Theoretical results
show that the proposed simultaneous estimation is asymptotically more efficient than
separate estimation of individual regression quantiles or ignoring the within-subject
dependency. The proposed method also offers an empirical likelihood ratio test examining
the homogeneity of the independent variable effects across the multiple quantiles. The
Wilk’s theorem holds for the test statistic, and thus the test is easy to implement.
Simulation studies and real data example of a multi-center AIDS cohort study are included
to illustrate the proposed estimation and testing methods, and empirically examine their
properties.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In longitudinal data, the temporal relationship between the response and explanatory variables can vary across the condi-
tional distribution of the response when heteroscedasticity exists. For this reason, quantile regression has recently attracted
attention; see Jung [6], He et al. [3], Koenker [10], Tang and Leng [18],Wang and Zhu [20], Tang et al. [19], and others. Quantile
regression enables one to postulate varying effects of the independent variables across the conditional distribution. Given
τ1, . . . , τK ∈ (0, 1), the quantiles of repeatedly measured response variables conditioning on the independent variables are
given, for each i ∈ {1, . . . , n}, by

Qτk(yi|xi) = xiβτk ,
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where n is the number of subjects, yi = (yi1, . . . , yimi)
⊤ denotes the mi response measurements observed within subject

i, xi = (xi1, . . . , ximi)
⊤ is an (mi × p)-dimensional matrix of the independent variables collected from the ith subject,

and βτk = (βτk,1, . . . , βτk,p)
⊤ is a p-dimensional parameter vector at the τkth quantile level. While the quantile specific

regression coefficients βτk , . . . , βτk collectively capture the relationships with the independent variables, most of the
existing work estimate the individual regression quantiles βτk separately for each k ∈ {1, . . . , K}.

For each k ∈ {1, . . . , K}, let ϕτk(u) be the derivative of the so-called check function ρτk(u) = u{τk − 1(u < 0)} and
set ϕ(u) = (ϕτ1(u)

⊤, . . . , ϕτK (u)⊤)⊤. In this paper, we estimate βτ1 , . . . , βτK simultaneously using generalized estimating
equations [12] as follows:

n
i=1

X⊤

i A−1/2
i Ri(δ)

−1A−1/2
i ϕ(Yi − Xiβ) = 0. (1)

Here Yi = (y⊤

i , . . . , y⊤

i )⊤, Xi = IK ⊗ xi defined by a left Kronecker product operator ⊗ and a (K × K)-dimensional identity
matrix IK , β = (β⊤

τ1
, . . . , β⊤

τK
)⊤, ϕ(Yi−Xiβ) = (ϕτ1(yi−xiβ1)

⊤, . . . , ϕτK (yi−xiβK )⊤)⊤, and Ai and Ri(δ) are an (miK ×miK)-
dimensional diagonal variance matrix and working correlation matrix of ϕ(Yi − Xiβ), respectively.

The term Ri(δ) in (1) is used to approximate the true correlation matrix of ϕ(Yi −Xiβ), denoted by Πi; it usually contains
a low dimension of nuisance parameters δ associated with the within-subject correlation. The proposed simultaneous
estimating equations accommodate not only the within-subject dependency commonly present in longitudinal data, but
also a cross-correlation among the multiple quantiles, thereby providing a more efficient estimation. The efficiency gain,
however, comes with an additional requirement of estimating nuisance parameters δ in Ri(δ). When a single quantile is
concerned, Yi and He [23] obtained a more efficient estimator by estimating directly the true correlation matrix Πi. Albeit
possible, reliable estimation of Πi is non-trivial, especially when mi is large with a large number of nuisance parameters
associatedwith the dependency structure, or a low or high quantile is of interest. This difficulty is exacerbatedwithmultiple
quantiles.

We propose to represent an inverse of Ri(δ) in (1) using the basis matrix expansion of Qu et al. [17] and avoid estimating
the additional nuisance parameters associated with the correlation structure. The estimating equations (1) are expanded
by basis matrices appropriately chosen for Ri(δ) and we use the empirical likelihood method [14] for the estimation of
the regression coefficients β . Qin and Lawless [16] discussed the empirical likelihood method for generalized estimating
equations; Yang and He [22] showed that the method similarly applies to quantile regression for independent data; Cho
et al. [1] extended it to longitudinal data in the single quantile regression model. We show that the proposed simultaneous
multiple quantile estimation approach is more efficient than the one either ignoring the inter-quantile correlation and
estimating βτk individually, or ignoring both the inter-quantile and within-subject correlation. As shown herein, simulation
studies exhibit efficiency gain in finite samples with meaningful effects in a concrete application.

The proposed empirical likelihood approach also provides a test for the homogeneity of the independent variable
relationship with the response across the multiple quantiles using the likelihood ratio statistic. Similar to its parametric
counterpart, the test does not require estimating the covariancematrix of the quantile regression coefficient estimator. This
is a highly desired property as the covariance matrix of the quantile regression coefficient estimator involves the densities
of the conditional distribution of the response at the quantiles of interest. Inference for this purpose is surprisingly less
developed, even though quantile regression analysis and heteroscedasticity are closely associated. For situations involving
independent data, Koenker and Bassett [11] and Furno [2] proposed tests. The tests require estimation of the covariance
matrix of quantile regression estimators and the performance hinges on reliable estimation of the densities at the quantiles
of interest. As for the inference of individual coefficients, we adopt the random perturbation approach [5] to approximate
the empirical distributions of the regression quantile estimators.

There has been growing interest in properly aggregating information across multiple quantiles under the homogeneity
assumption of quantile coefficients in order to yield more efficient estimators; see Koenker [9], Portnoy and Koenker [15],
Zou and Yuan [26], Xiao and Koenker [21], Kai et al. [7], and Zhao and Xiao [24]. The proposed empirical likelihood test
can be used to validate this assumption. When the homogeneity of a quantile coefficient cannot be rejected, the proposed
empirical likelihood estimation may further improve the estimation by constraining the common coefficient to be the same
across multiple quantiles.

The paper is organized as follows. Section 2 proposes efficient estimation and statistical inference in themultiple quantile
regression model. Sections 3 and 4 illustrate the proposed procedure with various simulation studies and an application to
an HIV data set, respectively. All proofs of theorems are provided in the Appendix.

2. Methodology

2.1. Estimation of multiple quantile regression

The working correlation structure Ri(δ) in (1) plays an important role in increasing estimation efficiency. It involves two
pieces of informative associations, a within-subject correlation, denoted by Ci(δ), and cross-correlation among K quantiles,
denoted by G. Accordingly, the working correlation structure can be expressed in block matrix form as Ri(δ) = G ⊗ Ci(δ).
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