
Journal of Multivariate Analysis 158 (2017) 103–116

Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Nonparametric tests for multi-parameter M-estimators
John E. Kolassa a,∗, John Robinson b

a Department of Statistics and Biostatistics, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA
b School of Mathematics and Statistics, University of Sydney, Carslaw Building F07, Eastern Avenue, Camperdown NSW 2006, Australia

a r t i c l e i n f o

Article history:
Received 26 November 2016
Available online 25 April 2017

AMS subject classifications:
62G09
62G10
62G20

Keywords:
Empirical saddlepoint
Tilted bootstrap
Regression
Non-linear regression
Generalized linear models

a b s t r a c t

We consider likelihood ratio like test statistics based onM-estimators for multi-parameter
hypotheses for some commonly used parametric models where the assumptions on which
the standard test statistics are based are not justified. The nonparametric test statistics
are based on empirical exponential families and permit us to give bootstrap methods for
the tests. We further consider saddlepoint approximations to the tail probabilities used in
these tests. This generalizes earlier work of Robinson et al. (2003) in two ways. First, we
generalize from bootstraps based on resampling vectors of both response and explanatory
variables to include bootstrapping residuals for fixed explanatory variables, resulting in a
surprising result for the weighted resampling. Second, we obtain a theorem for tail prob-
abilities under weak conditions providing essential justification for the approximation to
bootstrap results for both cases. We use as examples linear regression, non-linear regres-
sion and generalized linear models under models with independent and identically dis-
tributed residuals or vectors of observations, giving numerical illustrations of the results.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let Y1(θ), . . . , Yn(θ) be a sample of independent and identically distributed random vectors, with Yj(θ) from a
distribution F on the sample space Y. Suppose that θ satisfies

E
 n

j=1

ψj{Yj(θ), θ}


= 0 (1)

and consider test statistics based on T , the M-estimate of θ , defined by the solution of
n

j=1

ψj{Yj(θ), T } = 0, (2)

where ψj are assumed to be smooth functions from Y × Rp to Rp. The functions ψj are often chosen to make an analysis
more robust.

We have, in particular, two cases in mind, where, for example, in linear regression with response variables Zj and
explanatory variables Xj, Yj(θ) = (Zj, X⊤

j )
⊤ and

ψj{Yj(θ), t} = Xj(Zj − t⊤Xj),
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or Yj(θ) = Zj − θ⊤xj and

ψj{Yj(θ), t} = xj{Yj(θ)+ (θ − t)⊤xj} = xj(Zj − t⊤xj),

for fixed Xj = xj. Note that it is Yj(θ) that are identically distributed allowing resampling.
Let θ = (θ⊤

1 , θ
⊤

2 )
⊤, where θ1 ∈ Rp1 and θ2 ∈ Rp2 , p1 + p2 = p, and suppose we wish to test the null hypothesis

H0 : θ2 = θ20.

If the common distribution of Yj(θ) belongs to some parametricmodel, then F belongs to a class of distributions such that (1)
holdswith θ2 = θ20, and standard likelihood theory for estimation and inference is available. However,when the sample size
ismoderate to small orwhen themodel is incorrectly specified, the p-values obtained from the asymptotic theory can be very
inaccurate. [10] proposed a new likelihood like statistic based on an empirical exponentially tilted distribution considering
only the case ψj = ψ . Assuming that the density of

n
j=1 ψ{Yj(θ), θ} exists, they gave a saddlepoint approximation with

relative error of order O(n−1). This method can only be used when F is known. Further, they considered a formal approach
to empirical likelihood ratio tests using bootstrap tilting. The saddlepoint approximation to the distribution of the bootstrap
statistic requires a proof of the result without the restrictive condition that a density exists. This proof, given in Section 6, is
of an entirely different character from that of [10].

The two purposes of this paper are to justify the formal approach for saddlepoint approximations of [10] for empirical
likelihood tests and to consider score functions ψj which change with each observation. We note that [4] obtained tests in
the case of one-dimensional parameters for identically distributed score functions but their methods could not be extended
to the case of multi-dimensional parameters. In Section 2, a test statistic related to that from exponential families is derived
from the cumulant generating function of the left hand side of the estimating Eq. (2) when the distribution of Yj(θ) is known
under the null hypothesis. If the distribution is not known, a tilted empirical distribution satisfying the null hypothesis
is obtained as an approximation and its cumulant generating function is used to obtain a natural test statistic. We use
weighted bootstrap sampling from this tilted empirical distribution to obtain p-values for the test. The theorem of Section 3
gives a saddlepoint approximation of this bootstrap p-value and could be used instead of resampling. Bootstrap sampling
requires a double optimization for each bootstrap replicate and so is extremely computationally intensive, so the saddlepoint
approximation may be useful as an alternative. Note that the nonparametric approach depends only on ψj{Yj(θ), t} for all
j ∈ {1, . . . , n}. These functions may have been derived from some parametric model, but this model is not used except to
give these estimating functions. In Section 4 we provide applications to three special cases, linear regression, robust non
linear regression and robust generalized linear models. In Section 5 we give numerical results to illustrate the accuracy of
the approximations for some important cases of tests and compare the power of the tests to the power of the standard tests
in two cases.

2. A nonparametric test

First consider the simpler case in which the distribution F of Yj(θ) is known. Denote the cumulant generating function
of
n

j=1 ψj{Yj(θ), t} by

nK(τ , t) =

n
j=1

Kj(τ , t) =

n
j=1

ln

E

exp[τ⊤ψj{Yj(θ), t}]


. (3)

Let T = (T⊤

1 , T
⊤

2 )
⊤ be the M-estimator, the solution to

n
j=1

ψj{Yj(θ), T } = 0.

Consider a test statistic based on the function h defined by

h(t2) = inf
t1

sup
τ

{−K(τ , t)} = −K [τ {t(t2)}, t(t2)], (4)

where t(t2) = (t1(t2)⊤, t⊤2 )
⊤ for

τ(t) = arg sup
τ

{−K(τ , t)} and t1(t2) = arg inf
t1

[−K{τ(t), t}].

Note that h(θ20) = 0. So a test can be based on h(T2). This is the statistic considered in [10]. In Section 3.2 of [7] it is shown
that, in the case of generalized linear models with the classical score statistic when t = t2, the test based on h(t2) reduces
to the likelihood ratio statistic.

In practice, the distribution underlying the data sample Y1(θ), . . . , Yn(θ) is often unknown, and hence K is unknown,
and a nonparametric approach is required. An empirical exponential likelihood, equivalent to a tilted bootstrap, provides
empirical versions of the test of H0 : θ2 = θ20. We consider weighted empirical distributions

F̂(x) =

n
k=1

wk1{Yk(θ) ≤ x},
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