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a b s t r a c t

We consider, in the setting of p and n large, sample covariance matrices whose population
counterparts follow a spiked population model, i.e., with the exception of the first (largest)
few, all the population eigenvalues are equal. We study the asymptotic distribution of
the partial maximum likelihood ratio statistic and use it to test for the dimension of the
population spike subspace. Furthermore, we extend this to the ultra-high-dimensional
case, i.e., p > n. A thorough study of the power of the test gives a correction that allows us
to test for the dimension of the population spike subspace even for values of the limit of
p/n close to 1, a setting where other approaches have proved to be deficient.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In many applications involving high-dimensional data, a few of the dimensions containmost of the relevant information.
Identifying howmany dimensions should be kept in the analysis is of paramount importance in representing and modeling
data efficiently. Even though this issue has attracted much attention from practitioners as well as researchers, there is still
no clear consensus on how to proceed in a systematic way. Among practitioners, a popular approach amounts to checking
how many of the transformed variables explain a large part of the variance in the data and little (if any) attention is paid to
the nature of what is discarded. An exception to this simplified approach is presented in [20], in which the authors compare
the bulk of the eigenvalues to the typical bulk found in randommatrix theory.

Systems of this sort, in which a small number of variables contain all the relevant information, appear in various fields.
In an effort to understand these types of systems, Johnstone [11] introduced the spiked population model. In this model,
all the population eigenvalues are equal to 1 except for a few fixed, larger eigenvalues that carry the relevant information.
The behavior of the sample eigenvalues of the spiked population model in the high-dimensional case has been thoroughly
studied in the past decade; see, e.g., [3,2,19]. In a remarkable result, Baik et al. [2] proved that the asymptotic behavior
of the sample eigenvalues experiences a phase transition. If a population eigenvalue from the spike is not big enough, its
value cannot be recovered from the samples: the estimated eigenvalue gets pulled towards the bulk, the noisy section of the
matrix. On the other hand, if the spike population eigenvalue is bigger than a certain threshold, its value can be recovered
from the limit of the estimates, which are, however, biased.
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The same question about how many components should be kept was long ago answered in the traditional p fixed, n
growing paradigm (here p indicates the dimension of the data X and n indicates the sample size). One of the most common
tests assumes that the data follow a normal distribution and uses the maximum likelihood ratio statistics LRTd = Ld/Lp,
where Ld indicates the maximum likelihood under the null hypothesis (that d components should be kept) while Lp is the
maximum likelihood under the full model [15]. This maximum likelihood ratio test is used sequentially, starting with d = 0
and estimating d as the first hypothesized value that is not rejected. In the fixed p and n growing paradigm, under the
null hypothesis, ln(LRTd) has a known asymptotic distribution—a fact used by Bartlett [4] and by Lawley [13] to build the
rejection region of the test. Another common approach, which has the advantage of requiring no subjective judgments, is
based on the application of information theoretic criteria. Wax and Kailath [26] presented an estimator in this direction
using the minimum description length (MDL) principle [21,22]. In both cases, sequential testing or information criteria, a
crucial ingredient is the knowledge of the asymptotic distribution of the maximum likelihood ratio statistic under the null
hypothesis.

In the high-dimensional case, the dimensionality of the data can be relatively large compared to the sample size and
traditional statistical theory cannot be easily adapted. Under the assumption that there exist q0 < p < n fixed components,
Kritchman and Nadler [12] considered the MDL estimator developed in [26]. They show that MDL fails to detect the signal
at low signal-to-noise ratios and hence underestimates the signal at small sample sizes; they then present a new estimator
that improves the detection rate. Nevertheless, they only prove the consistency of their estimator under the scenario in
which p is fixed and n → ∞.

One of the contributions of our paper is the study of the asymptotic distribution of the partial maximum likelihood ratio
statistic for the case in which p, n → ∞, p/n → y ∈ (0, 1). This allows us to present a sequential test to determine the
dimension of the population spike subspace. Also, as a bonus, it paves the way to correct the penalty term inWax–Kailath’s
MDL estimator of the true dimension and then prove its consistency in this high-dimensional scenario.

We also address the problem for p > n. In some applications one can find situations in which the number of variables
exceeds the number of observations (y > 1). Suppose that we have multiple time series and, given a window in time, we
look for a small number of factors that contain most of the relevant information. In principle, we could take a big window
(large n) to estimate the covariance matrix. Financial time series, for example, change frequently (they could even be non-
stationary) leading us to believe that bigger time windows do not help in the understanding of the current structure. To
attack a situation of this sort we would need to develop a similar test for the case p ≥ n, p/n → y ∈ [1,∞). In this case
themaximum likelihood ratio statistic is not defined; see [7]. However, wemotivate a new definition by switching the rows
and columns in the data matrix. We find its asymptotic distribution and extend the definition and consistency of the MDL
criteria to this case. It should be noted that the case d = 0 was already done by Srivastava [23].

This paper is organized as follows: Section 2 presents the asymptotic distribution of the maximum likelihood ratio
statistic which is used in Section 3 to define the sequential test. Section 4 illustrates the results using simulated scenarios.
The power of the test is found in Section 5. Finally, Section 6 builds on the analysis from Section 5 to improve on the way to
estimate the true dimension in a consistent way and Section 7 concludes. All proofs are relegated to Appendix A.

The following notation and definitions will be used in our exposition. For positive integers m and n,Rm×n stands for
the class of all matrices of dimension m × n. For a square matrix A, |A| indicates its determinant. We will use the operator
vec : Rm×n

→ Rmn which vectorizes an arbitrary matrix by stacking its columns. Let A ⊗ B denote the Kronecker product
of matrices A and B. We will use S ∼ Wp(m,6) to denote that S follows a Wishart distribution with m degrees of freedom
and scale matrix 6, i.e., S = X⊤X where X ∈ Rm×p has independent rows following a normal distribution with mean 0 and
covariance matrix 6. We write χ2(f ) for the chi-square distribution with f degrees of freedom. The multivariate Gamma
function is defined as Γp(x) = πp(p−1)/4p

j=1 Γ {x − 1/2(j − x)} for a complex number x with Re(x) > 1/2(p − 1), where
Γ (x) is the ordinary Gamma function; see p. 62 of [15].

2. Asymptotic distribution of the maximum likelihood ratio statistic for partial sphericity

For X ∼ N (µ,6), with X ∈ Rp, the sphericity test is given by

H0 : 6 = σ 2Ip vs. Ha : 6 ≠ σ 2Ip (1)

with unknown σ . The maximum likelihood ratio test statistic to test the null hypothesis (1) was first derived by Mauchly
[14] as the power n/2 of

LRT0 = |6|{ tr(6)/p}−p, (2)

where 6 is the sample covariance matrix of the data X1, . . . ,Xn, defined as
n

i=1(Xi − X̄)(Xi − X̄)⊤/(n − 1). Gleser [7]
shows that the maximum likelihood ratio statistic exists only when p ≤ n − 1 and that the test with the rejection region
{LRT0 ≤ cα} (where cα is chosen so that the test has a significance level of α) is unbiased. The choice of cα follows from the
classical asymptotic result (see [15], Theorem 8.3.7) to the effect that under H0 with p fixed

−(n − 1)ρ ln(LRT0)  χ2(f )
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