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a b s t r a c t

The dependence structure of max-stable random vectors can be characterized by their
Pickands dependence function. In many applications, the extremal dependence measure
varies with covariates. We develop a flexible, semi-parametric method for the estimation
of non-stationary multivariate Pickands dependence functions. The proposed construction
is based on an accurate max-projection allowing to pass from the multivariate to the
univariate setting and to rely on the generalized additive modeling framework. In the
bivariate case, the resulting estimator of the Pickands function is regularized using
constrained median smoothing B-splines, and bootstrap variability bands are constructed.
In higher dimensions, we tailor our approach to the estimation of the extremal coefficient.
An extended simulation study suggests that our estimator performswell and is competitive
with the standard estimators in the absence of covariates. We apply the newmethodology
to a temperature dataset in the US where the extremal dependence is linked to time and
altitude.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Extreme events are of major importance in different fields. Such events, defined as rare and severe, may cause
considerablematerial damage, deaths, and economic losses. A proper statistical framework should then provide the tools for
measuring extreme events through the quantification of their frequencies, as well as intensities, which can be formulated
in terms of quantiles. Often, in practice, there is much more to gain by understanding simultaneous extreme events of
several quantities. For example, in finance, people are interested in the values of several assets that constitute the portfolio
and the risk that the assets collapse together. In environmental sciences, it is vital to measure the risk of simultaneous
flooding at different points of a river [2] or at nearby rivers. In both cases, the quantity of interest is measured by the
extremal dependence between different variables. There is a well-established literature onmodeling multivariate extremes
and thus, extremal dependence structures; some authors addressed this matter using Gaussian copulas [41] while others
analyzed multivariate extreme value copulas [26]. When the interest is in modeling multivariate extremes, the notion
of max-stable processes is very important. Max-stable processes arise as the limiting distribution of suitably normalized
componentwise maxima of independent replications of some continuous stochastic process [17,18,45]. The dependence
structure of a multivariate max-stable random vector can be characterized by its Pickands dependence function A (see
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Section 2.1) defined on the unit simplex Sd−1 =

ω = (ω1, . . . , ωd) ∈ Rd

+
: ω1 + · · · + ωd = 1


through the Pickands

representation theorem [39].
In this work, our main interest is modeling possible changes in the dependence structure among multivariate block

maxima according to a given set of covariates x. Moreover, the effect of some covariates does not need to have a linear
form but may vary smoothly. In classical regression analysis, a popular and flexible set of models is the class of generalized
additive models [24,28], which link the mean behavior of a random variable Y with a set of covariates X ∈ Rq through

E (Y | X = x) = g


u⊤β +

K
k=1

hk(tk)


, (1)

where

• g is a link function,
• (u1, . . . , us) and (t1, . . . , tK ) are subsets of {x1, . . . , xq},
• β ∈ Rs is a vector of parameters, and
• hk : Tk → R are smooth functions supported on closed Tk ⊂ R, for all k.

Chavez-Demoulin and Davison [6] proposed a first step to bridge extreme value theory and generalized additive models
(GAM). They modeled the marginal behavior of extremes with a GAM, but they did not investigate the effect of covariates
on the dependence structure. In this paper, we fill this gap in the context of block maxima analysis by developing a
methodology for estimating conditional Pickands dependence functions A(·|x). The method relies on the max-projection
of a d-dimensional max-stable random vector Z(x), where Z(x) = (Z1(x), . . . , Zd(x))⊤ given a set of covariates x. We show
that, conditionally on x and at any fixed value in the unit simplex, the univariate max-projection follows a classical two-
parameter Beta distribution. The second parameter of the Beta distribution is equal to 1, and the first parameter is exactly the
Pickands function evaluated at the specific value in the unit simplex. Under the resulting likelihood-based framework, we
benefit from the well-established framework of the GAM to fit non-stationary Pickands functions evaluated at the specific
value in the unit simplex. Repeating themax-projection procedure along with the GAM at several values in the unit simplex
generates estimates of semi-parametric models for the Pickands function conditional on x. In the bivariate case, for a fixed
value of x, the estimated Pickands function is regularized by constrained median smoothing B-splines. When d ≥ 3, the
focus is on the regularization of the non-stationary extremal coefficient estimate (see Section 3.4), as it allows for a simple
interpretation of the extremal dependence in high dimensions.

To the best of our knowledge, only [21] addressed the dependence of the Pickands function on covariates. They considered
a robust estimator, in the bivariate case, using local estimation with the minimum density power divergence criterion. Few
works addressed specific non-stationarity in the multivariate and spatial contexts: Huser and Genton [31] developed non-
stationary max-stable dependence structures in which covariates are incorporated, and their inference is based on pairwise
likelihoods. de Carvalho and Davison [16] constructed a model for a family of spectral measures from several populations,
to each of which a set of predictors is considered. They introduced the spectral density ratio model that they fitted using
empirical likelihood methods and showed how to relate the resulting tilting parameters to covariates. Jonathan et al. [32]
proposed a spline-based methodology to incorporate multiple covariates. Their approach used a Poisson process model for
the rate of occurrence of the threshold excesses and a generalized Pareto model for the size of the threshold excesses. Our
method provides a semi-parametric, flexible framework based on the classical setup of generalized additive models.

The paper is organized as follows: In Section 2, we summarize the theory of max-stable random vectors and then
introduce the notion of max-projection from multivariate to univariate settings. In Section 3, we develop the generalized
additive model for the Pickands dependence function in the multivariate context. We then propose a way to regularize the
Pickands function in the bivariate case and the extremal coefficient in higher dimensions. We implement a bootstrapping
procedure to compute the variability bands in Section 3.3. Finally, in the last two sections, we perform simulations
and address the estimation of a conditional Pickands model for the monthly maxima of the maximum and minimum
temperatures in the US.

2. Max-stable random vectors and max-projection

In this section, we first briefly recall some basics of max-stable random vectors and then propose a max-projection
procedure that synthesizes the extremal dependence of multivariate max-stable random vectors within a univariate Beta
random variable.

2.1. Max-stable random vectors

The usual strategy formodelingmultivariate blockmaxima is to take advantage of the solid theoretical basis formodeling
extreme events by completely characterizing the tail behavior of the underlying generating process. Multivariate extreme
value theory (see [42, Chapter 5] and [18, Chapter 6]) addresses the limiting behavior of suitably normalized componentwise
maximaMn = (Mn,1, . . . ,Mn,d)

⊤ whereMn,j represents themaximum, over a block of size n, of the jth component of a vector
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