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a b s t r a c t

The empirical checkerboard copula is amultilinear extension of the empirical copula,which
plays a key role for inference in copula models. Weak convergence of the corresponding
empirical process based on a random sample from the underlyingmultivariate distribution
is established here under broad conditions which allow for arbitrary univariate margins. It
is only required that the underlying checkerboard copula has continuous first-order partial
derivatives on an open subset of the unit hypercube. This assumption is very weak and
always satisfied when the margins are discrete. When the margins are continuous, one
recovers the limit of the classical empirical copula process under conditions which are
comparable to theweakest ones currently available in the literature. Amultiplier bootstrap
method is also proposed to replicate the limiting process and its validity is established.
The empirical checkerboard copula is further shown to be a more precise estimator of
the checkerboard copula than the empirical copula based on jittered data. Finally, the
weak convergence of the empirical checkerboard copula process is shown to be sufficiently
strong to derive the asymptotic behavior of a broad class of functionals that are directly
relevant for the development of rigorous statistical methodology for copula models with
arbitrary margins.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Copula-based models are now widespread. They have become indispensable tools for the analysis of multivariate data,
e.g., in biostatistics, finance, insurance, and hydrology. Introductions to copula modeling are provided, e.g., by Genest and
Favre [17], Kurowicka and Joe [30], Genest and Nešlehová [19], and Joe [28].

A copulamodel for a random vectorX = (X1, . . . , Xd) is based on the decomposition of its joint distribution functionH in
terms of its univariate margins F1, . . . , Fd and a copula C , i.e., a d-variate distribution function whose margins are standard
uniform. As shown by Sklar [43], there always exists a copula C such that, for all x1, . . . , xd ∈ R,

H(x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)}. (1)

A copulamodel forH is then obtained by assuming that F1, . . . , Fd and C belong to suitable classes of univariate distributions
and copulas, respectively. As the right-hand side of (1) leads to a bona fide distribution for any choice of margins and copula,
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this modeling approach is extremely flexible, whence its success. The main challenge typically resides in the inference on
the copula, through which dependence is introduced in the model.

LetX1 = (X11, . . . , X1d), . . . ,Xn = (Xn1, . . . , Xnd) be a random sample fromH , and letHn be the corresponding empirical
distribution function with univariate margins Fn1, . . . , Fnd. A fundamental tool for inference on C is the empirical copula Ĉn,
defined as the empirical distribution of the pseudo-sample (Fn1(X11), . . . , Fnd(X1d)), . . . , (Fn1(Xn1), . . . , Fnd(Xnd)).

When F1, . . . , Fd are continuous, it is indeed natural to rely on Ĉn. In this case, the copula C in (1) is unique and equal
to the distribution function of the unobservable vector (F1(X1), . . . , Fd(Xd)). Furthermore, the empirical copula process
Ĉn =

√
n (Ĉn − C) converges weakly, as n → ∞, to a centered Gaussian process. Various refinements of this result

were obtained under successively weaker smoothness assumptions on the underlying copula C; see, e.g., Rüschendorf [37],
Deheuvels [9–11], Stute [44], Gänßler and Stute [16], van der Vaart and Wellner [46], Fermanian et al. [15], Genest and
Rémillard [24], Ghoudi and Rémillard [26], Tsukahara [45], Segers [41], as well as Bücher and Volgushev [6] and Bücher
et al. [5].

The purpose of this paper is to extend the study of the empirical copula process to the case of arbitrarymargins F1, . . . , Fd.
This extension allows for the presence of ties in the data, which is a frequent phenomenon in practice. The key difficulty in
this endeavor is that relation (1) is satisfied by an infinite (in fact, uncountable) number of copulas and so the process Ĉn is
no longer well defined as soon as at least one of the margins is discontinuous.

To resolve this issue, we propose to work with a simple multilinear extension Ĉ✠
n of Ĉn. This so-called empirical

checkerboard copula, which was introduced by Deheuvels [9] in the continuous case, is always a bona fide copula. When
the marginal distributions are continuous, Ĉ✠

n and Ĉn never differ point-wise by more than d/n almost surely and hence
their limiting behavior is the same. When F1, . . . , Fd are purely discrete, Genest et al. [21] showed that Ĉ✠

n is a consistent
estimator of the unique checkerboard copula C✠ of H , which appears in the proof of Sklar’s theorem; see, e.g., Moore and
Spruill [31] or Deheuvels [8]. Genest and Nešlehová [18], who studied this construction in detail, argue that the dependence
structure of H is best represented by C✠. Additional evidence pointing to the importance of C✠ is provided by Denuit and
Lambert [12], Nešlehová [33], and Genest et al. [21], who show that when computed from Ĉ✠

n , dependence measures such
as Kendall’s tau or Spearman’s rho coincide with the classical tie-corrected versions of these coefficients.

It will be proved here that the empirical checkerboard copula process Ĉ✠
n =

√
n (Ĉ✠

n − C✠) converges weakly to a
centered Gaussian process for any choice of margins F1, . . . , Fd, thereby extending the findings of Genest et al. [21], who
only considered the case of purely discrete margins. When the margins of H are arbitrary, the matter is far more complex
and entirely new arguments are needed. As in the purely discrete case, the key issue is the choice of space onwhich theweak
convergence can be established. As noted by Fermanian et al. [15], the classical empirical copula process does not converge
weakly in the space ℓ∞([0, 1]d) of bounded functions on [0, 1]d equipped with the sup norm, unless the underlying copula
C has continuous first-order partial derivatives. A similar problem arises here.

To reach our goal, we will require that the first-order partial derivatives of C✠ exist and are continuous on an open set
O ⊂ [0, 1]d, and we will show that, for any compact set K ⊂ O, the process Ĉ✠

n converges weakly in the space C(K) of
continuous functions on K equipped with the sup norm. In the special case of continuous margins, our approach implies
the convergence of the classical empirical copula process Ĉn under regularity conditions that are equally weak as those of
Bücher et al. [5], whose result was heretofore regarded as the most general available.

In the literature, the presence of ties is frequently resolved by breaking them at random. This strategy, called ‘‘data
jittering’’, is considered in the copula modeling context, e.g., by Cameron et al. [7], Kojadinovic and Yan [29], Shi and
Valdez [42], and Bücher and Kojadinovic [4]; see also Genest and Nešlehová [18] and Genest et al. [22] for discussion. When
the support of the margins is known, such as when the variables X1, . . . , Xd are counts, jittering amounts to adding a small
noise to each observation at random. Aswill be shown, the empirical copula based on the jittered data, say ĈR

n , is a consistent
estimator of C✠. However, it will also be seen that the variance of the limit of ĈR

n =
√
n (ĈR

n −C✠) is systematically larger than
the variance of the limiting empiricalmultilinear copula process.When the additional variability caused by randomization is
removed by taking the expectation of ĈR

n over the jitters, the resulting estimator Ĉ
R⃝

n differs from the empirical checkerboard
copula Ĉ✠

n by at most d/n. This implies that Ĉ
R⃝

n has the same limiting behavior as Ĉ✠
n , which has the additional advantage of

being a bona fide copula.
After introducing the notations in Section 2, we give an analytic definition of C✠ in Section 3, along with a convenient

stochastic representation of the same. The empirical checkerboard copula Ĉ✠
n is then defined in Section 4 and its asymptotic

behavior is determined in Section 5. The proof is outlined in Section 6 and detailed in a series of Appendices. In Section 7, the
validity of the bootstrapmethod is established as ameans of approximating the limiting distribution of Ĉ✠

n. The checkerboard
approach is then compared to the data jittering strategy in Section 8. Finally, it is shown in Section 9 that the weak
convergence of Ĉ✠

n derived herein is sufficient to determine the asymptotics of a broad range of statistics arising in the
context of dependence modeling.

2. Notations

Let G be a univariate distribution function. Its left-continuous inverse is defined, for all u ∈ [0, 1], by G−1(u) = inf{t ∈

R : G(t) ≥ u}. Let RG = {G(y) : y ∈ R} ⊆ [0, 1] be the range of G and R̄G its closure in [0, 1]. For each y ∈ [−∞, ∞], G(y−)
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