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a b s t r a c t

Markov chain Monte Carlo (MCMC) is a simulation method commonly used for estimating
expectations with respect to a given distribution. We consider estimating the covariance
matrix of the asymptotic multivariate normal distribution of a vector of sample means.
Geyer (1992) developed a Monte Carlo error estimation method for estimating a uni-
variate mean. We propose a novel multivariate version of Geyer’s method that provides
an asymptotically valid estimator for the covariance matrix and results in stable Monte
Carlo estimates. The finite sample properties of the proposed method are investigated via
simulation experiments.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Many distributions encountered in modern applications are intractable in the sense that it is difficult to calculate expec-
tations without resorting to simulation-based methods. If it is difficult to simulate independent realizations from the target
distribution, then it is natural to turn to Markov chain Monte Carlo (MCMC). An MCMC experiment consists of generating
a realization of an irreducible Markov chain having the distribution of interest as its stationary distribution [22,25]. The
simulated data may then be used to estimate a vector of means associated with the stationary distribution. The reliability
of this estimation can be assessed by forming asymptotically valid confidence regions for the means of the stationary
distribution [6,7,9,18,19,28]. (There is a similar approach to quantile estimation [3].) The confidence regions are based on
estimating the covariance matrix in a multivariate Markov chain central limit theorem (CLT). We propose and study a novel
method for estimating this covariance matrix.

Estimating the covariancematrix has beenmostly ignored in theMCMC literature until recently. Vats et al. [28] and Vats
et al. [29] studied non-overlapping batch means and spectral methods, respectively, and found that these estimators often
underestimate the size of the confidence regions and overestimate the effective sample size unless the Monte Carlo sample
sizes are enormous. Kosorok [21] proposed an estimator that is closer in spirit to ours than the spectral and batch means
methods, but we will see later that it typically overestimates the effective sample size, resulting in overconfidence in
the reliability of the simulation. We propose alternative estimators of the covariance matrix that require weaker mixing
conditions on the Markov chain and weaker moment conditions on the function of interest than those required by batch
means and spectral methods. Specifically, our method applies as long as a Markov chain CLT holds and detailed balance is
satisfied, which is not enough to guarantee the asymptotic validity of batch means or spectral methods. We show that the
proposed estimators are asymptotically valid and study their empirical performance. The problem we consider will now be
described more formally.
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Let F be a distribution having support X and if p ≥ 1, let g : X → Rp be F-integrable and set

µ = EF {g(X)} =

∫
X
g(x)F (dx).

Also, let Φ = {X0, X1, X2, . . .} be a Harris ergodic – namely, irreducible, aperiodic and Harris recurrent – Markov chain
having invariant distribution F . By averaging the function over a realization of Φ , estimation of µ is straightforward since,
with probability 1,

µn =
1
n

n∑
i=1

g(Xi) → µ as n → ∞.

The Markov chain strong law justifies the use of MCMC but provides no information about the quality of estimation or how
large the simulation size n should be. More specifically, additional information is needed to answer either of the following
two questions.

1. Given a pre-specified run length n, how reliable is µn as an estimate of µ? Specifically, how do we construct a
confidence region for µ?

2. How large should the simulation size n be to ensure a reliable estimate of µ?

We can address these issues through the approximate sampling distribution of theMonte Carlo error,µn−µ. AMarkov chain
CLT exists when there is a positive definite matrix Σ such that, as n → ∞,

√
n (µn − µ) ⇝ Np(0, Σ). (1)

See Jones [17] and Roberts and Rosenthal [26] for conditions which ensure a CLT. Notice that, due to the serial correlation
inherent to the Markov chain, Σ ̸= varF {g(X)} except in trivial cases. In Section 3, we propose two new estimators of Σ . For
now, let Σn be a generic positive definite estimator of Σ .

A confidence region for µ constructed using Σn forms an ellipsoid in p dimensions oriented along the directions of
the eigenvectors of Σn. Let |·| denote determinant. One can verify by straightforward calculation that the volume of the
confidence region is proportional to

√
|Σn| and thus depends on the estimated covariance matrix Σn only through the

estimate |Σn| of the generalized variance of the Monte Carlo error, |Σ |. The volume of the confidence region can describe
whether the simulation effort is sufficiently large to achieve the desired level of precision in estimation [6,18,28].

Another common and intuitively reasonable method for choosing the simulation effort is to simulate until a desired
effective sample size (ESS), i.e., the number with the property that µn has the same precision as the sample mean obtained
by that number of independent and identically distributed (iid) samples, has been achieved [1,5,10]. LetΛ = varF {g(X)}. Vats
et al. [28] introduced the following definition of effective sample size

ESS = n(|Λ|/|Σ |)1/p, (2)

which is naturally estimated with n(|Λn|/|Σn|)1/p where Λn is an estimator of Λ, e.g., the usual sample covariance
matrix. Vats et al. [28] showed that terminating the simulation based on the effective sample size is equivalent to termination
based on a relative confidence region where the Monte Carlo error is compared to size of the uncertainty in the target
distribution. The point is that again a common method for assessing the reliability of the simulation is determined by the
estimated generalized variance of the Monte Carlo error.

The estimators ofΣ studied by Kosorok [21], Vats et al. [28], and Vats et al. [29] typically underestimate the generalized
variance. We will propose a different method and show that it is asymptotically valid. Specifically, our method provides
a consistent overestimate for the asymptotic generalized variance of the Monte Carlo error and therefore will result in a
slightly larger simulation effort, leading to a more stable estimation process.

The rest of the paper is organized as follows. In Section 2, we develop notation and background in preparation for the
estimation theory. In Section 3, we propose our method and establish its asymptotic validity. In Section 4, we examine the
finite sample properties of the proposed method through a variety of examples. We consider a Bayesian logistic regression
example of 5 covariates where a symmetric random walk Metropolis–Hastings algorithm is implemented to calculate the
posterior mean of the regression coefficient vector, a Bayesian one-way random effects model where we use a random scan
Gibbs sampler to estimate the posterior expectation of all 8 parameters, and a reversible multivariate AR(1) process that
takes values in R12. We illustrate the use of multivariate methods in a meta-analysis application where the posterior has
dimension 65.

2. Notation and background

Recall that F has support X and let B(X ) be a σ -algebra. For n ∈ N+
= {1, 2, 3, . . .} let Pn(x, dy) be the n-step Markov

transition kernel so that for x ∈ X , B ∈ B(X ), and k ∈ N = {0, 1, 2, . . .} we have Pn(x, B) = Pr(Xk+n ∈ B | Xk = x), where Pr
denotes probability. We assume that P satisfies detailed balance with respect to F . That is,

F (dx)P(x, dy) = F (dy)P(y, dx). (3)
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