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a b s t r a c t

Covariance matrices that fail to be positive definite arise often in covariance estimation.
Approaches addressing this problem exist, but are not well supported theoretically. In
this paper, we propose a unified statistical and numerical matrix calibration, finding the
optimal positive definite surrogate in the sense of Frobenius norm. The proposed algorithm
can be directly applied to any estimated covariance matrix. Numerical results show that
the calibrated matrix is typically closer to the true covariance, while making only limited
changes to the original covariance structure.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The estimation of covariance matrices plays an essential role in multivariable data analysis. Covariances are required
by many statistical modeling approaches, including multivariate regression and the analysis of spatial data. Often, well-
estimated covariancematrices improve efficiency in estimating parameters in amean function [22]. In some circumstances,
the covariance matrix may itself be of direct scientific interest: for instance, in spatial variation analysis for geographical
data, and in volatility analysis for financial data.

However, it is not uncommon that estimators of covariance matrices fail to be positive definite. A typical example is the
sample covariancematrix, which is often singularwhen the sample size is close to, or less than, the dimension of the random
samples [3]. If singularity is caused by collinearity, conventional ridge regression [18] or modern variable selection [6,21]
approaches may solve the problem by excluding redundant variables. Dimension reduction approaches such as Principle
Component Analysis [19] can also help to exclude eigenvalues with ignorable contributions.

However, these resolutions only apply in caseswhere such redundancy truly exists.More often, non-positive definiteness
may be put down to the generic difficulty ofmaintaining positive definiteness in covariance estimation; resulting estimators
may not even be positive semidefinite. Even for elaborately designed statistical approaches, the estimators of covariance
matrices can be ill-conditioned [5,14]. A number of approaches have been proposed to resolve this issue. However, these are
either limited to special circumstances or lack theoretical support. For instance, one alternative is to use theMoore–Penrose
inverse of a non-positive definite matrix to replace the regular inverse typically used in statistical inferences [20]. However,
this does not directly resolve the non-positive definiteness, and is lack of statistical interpretation. Alternatively, a smoothing
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approach exists [23] in which non-positive eigenvalues of the covariance matrix estimator are replaced by certain positive
values. However, justification for the selection of these positive values was scant.

Based on the fundamental work of Halmos [7], Higham [9] proposed a solution for finding the nearest (in the sense of
Frobenius norm) positive semidefinite matrix to an arbitrary input matrix. However, this surrogate positive semidefinite
matrix is still singular [9,10], so difficulty persists in using the surrogate matrix in statistical practice. Rebonato and
Jäckel [17] considered a correlation matrix calibration using the hyperspherical decomposition and eigenvalue correction,
which again leads to positive semidefinite correlation matrices. Hendrikse et al. [8] proposed an eigenvalue correction
method using bootstrap resampling in order to reduce the bias arising in sample eigenvalues. Their work focused on the
correction of the sample covariance, where the performance of the correction method relies on the assumed distribution of
the covariance matrix eigenvalues in the population.

In this paper, we propose a unified approach to calibrate a non-positive definite covariance matrix to ensure positive
definiteness. The calibrated covariance matrix is usually closer to the true covariance matrix than the original covariance
matrix estimator. Our proposed approach is implemented through a straightforward screening algorithm. In Section 2, we
briefly review the matrix nearness problem, before proposing our novel calibration method together with its integrated
criterion and algorithm. In Section 3 we conduct two simulation studies, and in Section 4 we discuss two case studies,
including a calibration of the non-positive definite covariance matrix obtained by nonparametric regression in Diggle and
Verbyla [5]. Conclusions are presented in Section 5.

2. Calibration method

2.1. The matrix nearness problem

In numerical analysis, a nearness problem involves finding, for a given matrix and a particular matrix norm, the nearest
matrix that has certain important properties. Examples include finding the nearest covariance matrix [9] or correlation
matrix [2,16] in the sense of the Frobenius norm (or 2-norm).

Given an arbitrary square matrix X of order n, we denote its Frobenius norm by ∥X∥ = trace(X⊤X)1/2. The nearness
problem involves finding the nearest symmetric positive semidefinite matrix P0(X):

P0(X) = argmin
A≥0

∥X − A∥. (1)

Throughout, we shall assume that A ≥ 0 denotes both non-negative definiteness and symmetry A = A⊤. Higham [9] used a
polar decomposition to show that the solution to (1) has the explicit form P0(X) = (B+H)/2, where B = S(X) = (X+X⊤)/2
is the symmetric matrix version of X , and H is the symmetric polar factor of B, satisfying B = UH with U a unitary matrix
and H ≥ 0. This solution has been compiled in a MATLAB file named poldex.m, which can be found in the Matrix
Computation Toolbox [11]. Clearly, if X is symmetric then the solution becomes P0(X) = (X + H)/2. If, further, we are
given the spectral decomposition of a symmetric X = X⊤ (that is, X = QΛQ⊤ for Q⊤Q = I and Λ = diag(λ1, . . . , λn)), we
have P0(X) = Qdiag{max(λ1, 0), . . . ,max(λn, 0)}Q⊤. In other words, the nearest positive semidefinitematrix P0(X) can be
obtained by replacing by zero any negative eigenvalues of a symmetric X [10], eliminating the corresponding columns of Q
(and causing some information loss). A immediate alternative is to instead replace negative eigenvalues by positive values,
so that a positive definite correction of X is formed without this loss of information about Q . However, the theory of this
idea need to be justified, particularly on how to choose appropriate replacement positive values, for which we will address
in this paper.

2.2. A new calibration approach

We now aim to find a positive definite matrix surrogate for a generic X . First, we formulate this question as a nearness
problem. For c ≥ 0, let Dc = {A : A − cI ≥ 0} be the set of positive definite matrices with no eigenvalue smaller than c.
Given X , finding the nearest matrix Pc(X) ∈ Dc to X in terms of the Frobenius norm amounts to defining

Pc(X) = argmin
A∈Dc

∥X − A∥. (2)

An explicit expression for Pc(X) is given in Theorem 1.

Theorem 1. Given X and a constant c ≥ 0, the nearest (in the sense of Frobenius norm) matrix Pc(X) ∈ Dc to X is of the form

Pc(X) = P0(X − cI) + cI (3)

where (as before) P0(X − cI) = (B + H)/2 for B = S(X − cI) and H the polar factor of B. Furthermore, if X is symmetric with
spectral decomposition X = Qdiag(λ1, . . . , λn)Q⊤ then Pc(X) has the simplified form

Pc(X) = Qdiag{max(λ1, c), . . . ,max(λn, c)}Q⊤. (4)
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