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a b s t r a c t

We consider the problem of calculating distance correlation coefficients between random
vectors whose joint distributions belong to the class of Lancaster distributions. We
derive under mild convergence conditions a general series representation for the distance
covariance for these distributions. To illustrate the general theory, we apply the series
representation to derive explicit expressions for the distance covariance and distance
correlation coefficients for the bivariate normal distribution and its generalizations of
Lancaster type, the multivariate normal distributions, and the bivariate gamma, Poisson,
and negative binomial distributions which are of Lancaster type.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The concepts of distance covariance and distance correlation, introduced by Székely, et al. [27,31], have been shown to
be widely applicable for measuring dependence between collections of random variables. As examples of the ubiquity of
distance correlation methods, we note the results on distance correlation given recently by: Székely, et al. [21,28–31], on
statistical inference; Sejdinovic, et al. [26], on machine learning; Kong, et al. [10], on familial relationships and mortality;
Zhou [33], on nonlinear time series; Lyons [17], on abstract metric spaces; Martínez-Gómez, et al. [18] and Richards,
et al. [20], on large astrophysical databases; Dueck, et al. [5], on high-dimensional inference and the analysis of wind data;
and Dueck, et al. [6], on a connection with singular integrals on Euclidean spaces.

A result which is of fundamental importance in distance correlation theory is the explicit formula for the empirical
distance correlation coefficient [31, pp. 2773–2774]. By combining that explicit formula with the fast algorithm of Huo
and Székely [9], it becomes straightforward to apply distance correlation methods to real-world data sets.

On the other hand, the calculation of population distance correlation coefficients remains an intractable problem
generally. Székely, et al. [31, pp. 2785–2786] calculated the distance correlation coefficient for the bivariate normal
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distribution; Dueck, et al. [4, Appendix] extended that result to the general multivariate normal distribution; and Dueck,
et al. [5] calculated the affinely invariant distance correlation coefficient for themultivariate normal distribution. Otherwise,
no such results are yet available for any other distribution. Hence, the state of distance correlation theory hitherto is that
the empirical coefficients can be calculated readily but the opposite holds for their population counterparts, generally.
Consequently, itwas not possible to calculate distance correlation coefficients explicitly for given nonnormal distributions in
terms of the usual parameters that parametrize these distributions, or to ascertain for nonnormal distributions any analogs
of the limit theorems derived by Dueck, et al. [5, Section 4].

We describe in detail the difficulties arising in attempts to calculate the population distance correlation coefficients. Let
p and q be positive integers. For column vectors s ∈ Rp and t ∈ Rq, denote by ∥s∥ and ∥t∥ the standard Euclidean norms on
the corresponding spaces; thus, if s = (s1, . . . , sp)⊤ then ∥s∥ = (s21 + · · · + s2p)

1/2, and similarly for ∥t∥. Given vectors u and
v of the same dimension, we let ⟨u, v⟩ be the standard Euclidean scalar product of u and v. For jointly distributed random
vectors (X, Y ) ∈ Rp

× Rq and non-random vectors (s, t) ∈ Rp
× Rq, let

ψX,Y (s, t) = E exp

i⟨s, X⟩ + i⟨t, Y ⟩


,

i =
√

−1, be the joint characteristic function of (X, Y ), and let ψX (s) = ψX,Y (s, 0) and ψY (t) = ψX,Y (0, t) be the
corresponding marginal characteristic functions. For any z ∈ C, let |z|2 denote the squared modulus of z; also, we use
the notation

γp =
π (p+1)/2

Γ

(p + 1)/2

 . (1.1)

In the case of distributions with finite first moments, Székely, et al. [31, p. 2772] defined V(X, Y ), the distance covariance
between X and Y , to be the positive square-root of

V2(X, Y ) =
1
γpγq


Rp+q

|ψX,Y (s, t)− ψX (s)ψY (t)|2

∥s∥p+1 ∥t∥q+1
ds dt (1.2)

and they defined the distance correlation coefficient between X and Y as

R(X, Y ) =
V(X, Y )

√
V(X, X)V(Y , Y )

(1.3)

if both V(X, X) and V(Y , Y ) are strictly positive, and otherwise to be zero [31, p. 2773]. For distributions with finite first
moments we have 0 ≤ R(X, Y ) ≤ 1, and R(X, Y ) = 0 if and only if X and Y are mutually independent.

For given random vectors X and Y , the fundamental obstacle in calculating the population distance correlation coefficient
(1.3) is the computation of the singular integral (1.2). In particular, the singular nature of the integrand precludes evaluation
of the integral by expanding the numerator, |ψX,Y (s, t) − ψX (s)ψY (t)|2, and subsequent term-by-term integration of each
of the resulting three terms.

In this paper, we calculate the distance correlation coefficients for pairs (X, Y ) of random vectors whose joint distri-
butions are in the class of Lancaster distributions, a class of probability distributions made prominent by Lancaster [15,16]
and Sarmanov [24]. The distribution functions of the Lancaster family arewell-known to have attractive expansions in terms
of certain orthogonal functions (Koudou [14]; Diaconis, et al. [3]). By applying those expansions, we obtain explicit expres-
sions for the distance covariance and distance correlation coefficients.

Consequently, we derive under mild convergence conditions a general formula for the distance covariance for the
Lancaster distributions.We apply the general formula to obtain explicit expressions for the distance covariance and distance
correlation for the bivariate normal distributions and some of its generalizations, for the multivariate normal distributions,
and for bivariate gamma, Poisson, and negative binomial distributions. We remark that explicit results can also be obtained
for other Lancaster-type expansions obtained by Bar-Lev, et al. [2]; however, wewill omit the details for other cases because
the formulas derived here are entirely representative of other cases.

2. The Lancaster distributions

To recapitulate the class of Lancaster distributions we generally follow the standard notation in that area, as given by
Koudou [13,14]; cf., Lancaster [16], Pommeret [19], or Diaconis, et al. [3, Section 6].

Let (X, µ) and (Y, ν) be locally compact, separable probability spaces, such that L2(µ) and L2(ν) are separable. Let σ , a
probability measure on X × Y, have marginal distributions µ and ν; then there exist functions Kσ and Lσ such that

σ(dx, dy) = Kσ (x, dy)µ(dx) = Lσ (dx, y)ν(dy).

We note that Kσ and Lσ represent the conditional distributions of Y given X = x, and X given Y = y, respectively.
Let C denote a countable index set with a zero element, denoted by 0. Let {Pn : n ∈ C} and {Qn : n ∈ C} be sequences

of functions on X and Y which form orthonormal bases for the separable Hilbert spaces L2(µ) and L2(ν), respectively. We
assume, by convention, that P0 ≡ 1 and Q0 ≡ 1.
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