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a b s t r a c t

We consider conditional quantile estimation in functional index coefficient models for
time series data, using regression splines, which gives more complete information on the
conditional distribution than the conditional mean model. An important technical aim is
to demonstrate the faster rate and asymptotic normality of the parametric part, which is
achieved through an orthogonalization approach. For this class of very flexible models,
variable selection is an important problem. We use smoothly clipped absolute deviation
(SCAD) penalty to select either the covariates with functional coefficients, or covariates
that enter the index, or both. We establish the oracle property of the penalization method
under strongly mixing (α-mixing) conditions. Simulations are carried out to investigate
the finite-sample performance of estimation and variable selection. A real data analysis is
reported to demonstrate the application of the proposed methods.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Linear time series models are well developed in the statistics and econometrics literature, including the well-known
ARMAmodels. However, linearmodels cannot capture somenonlinear effects often seen in real data, as has been highlighted
in [8,13,19]. Even with parametric nonlinear models, the pre-specified form of nonlinearity is too stringent in many
applications. Therefore, considering the curse of dimensionality in full-blown nonparametric models, semiparametric
modeling has become popular in recent years [2,29,40].

One popular class of models for semiparametric modeling is the functional coefficient model (FCM) introduced in [7,21],
for cross-sectional data and time series data, respectively. The model is given by

Yi =

p
j=1

gj(Xi)Zij + ei,

given observations Yi, Xi, Zi = (Zi1, . . . , Zip)⊤, i = 1, . . . , n, where X is usually called an index variable in this context. The
FCM generalizes the linear models by allowing the regression coefficient to depend smoothly on the index variable, e.g.,
time. FCM has been widely studied in the literature; see [2,18,19,24,28,36].

If the index Xi is a multidimensional vector, it is hard to fit the FCM directly since accurate estimation of multivariate
smooth functions typically requires an exorbitantly large sample size. Xia and Li [49] proposed an elegant solution for
multivariate X by introducing an index structure to effectively transform the index vector into a one-dimensional index
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variable as in

Yi =

p
j=1

gj(Xi
⊤β)Zij + ei. (1)

Compared to FCM, the extra complication is to estimate simultaneously the index coefficient β together with smooth
functions g = (g1, . . . , gp)⊤. Fan et al. [17] proposed efficient estimation methods and used a stepwise method combined
with Akaike’s information criterion (AIC, [1]) for selecting significant covariates X in the index. Lu et al. [38] provided some
asymptotic theory for estimation. Cai et al. [3] used a smoothly clipped absolute deviation (SCAD) penalty to select the
significant covariates in both X and Z.

In a seminal paper, Koenker and Bassett [32] proposed linear quantile regression to examine the effects of an observable
covariate on the distribution of a dependent variable, with special interest in the tail of the distribution. Since then, quantile
regression has beenwidely used in various disciplines, including finance, economics, medicine, and biology; see for example
the popular monograph [31]. Parallel to linear mean regression based on least squares, linearity in quantile regression has
been relaxed to accommodate possibly nonlinear effects in nonparametric and semiparametric quantile regression models.
This large literature includes [22] for spline estimation of nonparametric quantile regression, [6,20,52] for local polynomial
estimation, [34] for partial linear models, [11,25,37] for additive models, [4,5,46] for functional coefficient models, and
[30,33,48] for single-index models.

In this paper, we are interested in quantile regression for (1), which we call the functional index model (FIM), and
we are in particular interested in the associated variable selection problem, which was not considered before. Recent
challenging topics in statistics include the development of automatic variable selection procedures intended to find the
relevant parameters among all candidate parameters and simultaneously estimate them. As argued in [36], traditional
variable selection methods, such as stepwise regression and best subset selection, are computationally infeasible when
the number of predictors is large, and this is part of the reason why the penalization based method has gained popularity in
recent years.

Substantial progress has been made on the problem of variable selection for linear models and generalized linear
models [9,14,15,26,41,53,55,56]. More recently, variable selection methods using penalty functions in nonparametric or
semiparametric settings have been developed. For example, Xie and Huang [50] developed variable selection based on
penalization for partially linear models, and additive models were investigated in [27,51]. For semiparametric functional
coefficient models, Li and Liang [36] used penalization to select the significant predictors in the parametric components,
while a group penalization method for selecting nonparametric functions was proposed in [45,42]. These previous works
motivated us to develop a penalization based approach for variable selection in FIM for both the index parameters and the
smooth functions.

The papers mentioned above on variable selection are based on the assumption that the observed data are independent
and identically distributed (i.i.d.). Under a non i.i.d. setting, the studies on penalized variable selection are scarce; see,
e.g., [3,43]. In this paper, we will develop theory and methodology for the quantile FIM using polynomial spline estimation,
under strongly mixing assumptions which are more appropriate for financial or other data with observations that are time
dependent. Polynomial spline estimation provides an alternative to local polynomial estimation method. The comparative
advantages of spline methods were carefully documented in [35], among which the most notable is the computational
convenience, as argued in [35,44].

The rest of the paper is organized as follows. In Section 2, we present the estimation method using polynomial splines,
and asymptotic properties of the estimators are considered. Then we further consider variable selection for both the index
parameter and the smooth functions. Section 3 presents some Monte Carlo studies of the finite-sample performance of the
estimators, as well as an empirical application of the method. We end the paper with a short discussion in Section 4. The
technical proofs are relegated to the Appendix.

2. Quantile index coefficient models

2.1. Estimation methods without variable selection

We consider the index coefficient model

Yi = g⊤(Xi
⊤β)Z + ei,

where (Xi, Zi, Yi, ei) is strictly stationary, g(·) = (g1(·), . . . , gp(·))⊤ are the p coefficient functions whose argument is the
index Xi

⊤β, Pr(ei ≤ 0|Xi, Zi) = τ , and Xi and Zi are q-dimensional and p-dimensional covariates, respectively. We assume
the first component of Z is 1 and thus no separate intercept is explicitly written. We also allow common variables in Z and
X; in particular, it is permissible that Z = (1,X⊤)⊤. In that case, we assume that the identifiability conditions stated in
Theorem 1 of [17] are satisfied. Besides, we always assume ∥β∥ = 1 and β1 > 0.

We use polynomial splines to approximate the components. Let τ0 = a < τ1 < · · · < τK ′ < b = τK ′+1 be a partition of
[a, b] into subintervals [τk, τk+1), k = 0, . . . , K ′ withK ′ internal knots.We only restrict our attention to equally spaced knots
although data-driven choices can be considered such as putting knots at certain sample quantiles of the observed covariate



Download English Version:

https://daneshyari.com/en/article/5129421

Download Persian Version:

https://daneshyari.com/article/5129421

Daneshyari.com

https://daneshyari.com/en/article/5129421
https://daneshyari.com/article/5129421
https://daneshyari.com

