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a b s t r a c t

This paper introduces max-characteristic functions (max-CFs), which are an offspring of
multivariate extreme-value theory. A max-CF characterizes the distribution of a random
vector in Rd, whose components are nonnegative and have finite expectation. Pointwise
convergence of max-CFs is shown to be equivalent to convergence with respect to
the Wasserstein metric. The space of max-CFs is not closed in the sense of pointwise
convergence. An inversion formula for max-CFs is established.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Multivariate extreme-value theory (MEVT) is the proper toolbox for analyzing several extremal events simultaneously.
Its practical relevance in particular for risk assessment is, consequently, obvious. But on the other handMEVT is by nomeans
easy to access; its key results are formulated in a measure theoretic setup; a common thread is not visible.

Writing the ‘angularmeasure’ inMEVT in termsof a randomvector, however, provides themissing common thread: Every
result in MEVT, every relevant probability distribution, be it a max-stable one or a generalized Pareto distribution, every
relevant copula, every tail dependence coefficient etc. can be formulated using a particular kind of norm on multivariate
Euclidean space, called D-norm; see below. For a summary of MEVT and D-norms we refer to Falk et al. [10], Aulbach et al.
[1–5], Falk [9]. For a review of copulas in the context of extreme-value theory, see, e.g., [11].

A norm ∥·∥D on Rd is a D-norm, if there exists a random vector (rv) Z = (Z1, . . . , Zd) with Zi ≥ 0, E(Zi) = 1, 1 ≤ i ≤ d,
such that

∥x∥D = E

max
1≤i≤d

(|xi| Zi)

, x = (x1, . . . , xd) ∈ Rd.

In this case the rv Z is called generator of ∥·∥D. Here is a list of D-norms and their generators:

• ∥x∥∞ = max1≤i≤d |xi| is generated by Z = (1, . . . , 1),
• ∥x∥1 =

d
i=1 |xi| is generated by Z = random permutation of (d, 0, . . . , 0) ∈ Rd with equal probability 1/d,
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• ∥x∥λ =

d
i=1 |xi|λ

1/λ
, 1 < λ < ∞. Let X1, . . . , Xd be independent and identically Fréchet-distributed random

variables, i.e., Pr(Xi ≤ x) = exp(−x−λ), x > 0, λ > 1. Then Z = (Z1, . . . , Zd)with

Zi =
Xi

Γ (1 − 1/λ)
, i = 1, . . . , d,

generates ∥·∥λ. By Γ (p) =


∞

0 xp−1e−x dx, p > 0, we denote the usual Gamma function.

D-norms are a powerful tool when analyzing dependence in MEVT. The first letter of the word ‘‘dependence’’ is, therefore,
the reason for the index D.

The generator of a D-norm is not uniquely determined, even its distribution is not. Let, for example, X ≥ 0 be a random
variable with E(X) = 1 and put Z = (X, . . . , X). Then Z generates ∥·∥∞ as well. However, we can, given a generator Z of a
D-norm, design a D-norm in a simple fashion so that it characterizes the distribution of Z: consider the D-norm on Rd+1

(t, x) → E {max (|t| , |x1| Z1, . . . , |xd| Zd)} .

Then it turns out that the knowledge of this D-norm fully identifies the distribution of Z; it is actually enough to know this
D-norm when t = 1, as Lemma 1.1 shows, and this shall be the basis for our definition of a max-characteristic function.

Lemma 1.1. Let X = (X1, . . . , Xd) ≥ 0, Y = (Y1, . . . , Yd) ≥ 0 be random vectors with E(Xi), E(Yi) < ∞ for all i ∈ {1, . . . , d}.
If we have for each x > 0 ∈ Rd

E {max(1, x1X1, . . . , xdXd)} = E {max(1, x1Y1, . . . , xdYd)} ,

then X =d Y , where ‘‘=d’’ denotes equality in distribution.

Proof. Fubini’s theorem implies E(X) =


∞

0 Pr(X > t) dt for any random variable X ≥ 0. consequently, we have for x > 0
and c > 0

E

max


1,

X1

cx1
, . . . ,

Xd

cxd


=


∞

0
1 − Pr


max


1,

X1

cx1
, . . . ,

Xd

cxd


≤ t


dt

=


∞

0
1 − Pr(1 ≤ t, Xi ≤ tcxi, 1 ≤ i ≤ d) dt

= 1 +


∞

1
1 − Pr (Xi ≤ tcxi, 1 ≤ i ≤ d) dt.

The substitution t → t/c yields that the right-hand side above equals

1 +
1
c


∞

c
1 − Pr(Xi ≤ txi, 1 ≤ i ≤ d) dt.

Repeating the preceding arguments with Yi in place of Xi, we obtain for all c > 0 from the assumption the equality
∞

c
1 − Pr(Xi ≤ txi, 1 ≤ i ≤ d) dt =


∞

c
1 − Pr(Yi ≤ txi, 1 ≤ i ≤ d) dt.

Taking right derivatives with respect to c we obtain for c > 0

1 − Pr(Xi ≤ cxi, 1 ≤ i ≤ d) = 1 − Pr(Yi ≤ cxi, 1 ≤ i ≤ d),

and, thus, the assertion. �

Let Z = (Z1, . . . , Zd) be a random vector, whose components are nonnegative and integrable. Then we call

ϕZ (x) = E {max (1, x1Z1, . . . , xdZd)} , x = (x1, . . . , xd) ≥ 0 ∈ Rd,

the max-characteristic function (max-CF) pertaining to Z . Lemma 1.1 shows that the distribution of a nonnegative and
integrable random vector Z is uniquely determined by its max-CF.

Some obvious properties of ϕZ are ϕZ (0) = 1, ϕZ (x) ≥ 1 for all x and

ϕZ (rx)

≤ rϕZ (x) if r ≥ 1,
≥ rϕZ (x) if 0 ≤ r ≤ 1.

It is straightforward to show that any max-CF is a convex function and, thus, it is continuous and almost everywhere
differentiable; besides, its derivative from the right exists everywhere. This fact will be used in Section 2.2, where we will
establish an inversion formula for max-CFs.

When Z has bounded components, we haveϕZ (x) = 1 in a neighborhood of the origin. Finally, themax-CF ofmax(Z1, Z2)
(where the max is taken componentwise) evaluated at x is equal to the max-CF of the vector (Z1, Z2) evaluated at the point
(x, x).
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