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a b s t r a c t

In this paper a nonparametric latent variable model is estimated without specifying the
underlying distributions. The main idea is to estimate in a first step a common factor
analysis model under the assumption that each manifest variable is influenced by at most
one of the latent variables. In a second step nonparametric regression is used to analyze
the relation between the latent variables. Theoretical results concerning consistency of
the estimates are presented, and the finite sample size performance of the estimates is
illustrated by applying them to simulated data.
© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Latent variable models provide statistical tool for explaining and analyzing underlying structure of multivariate data by
using the idea that observable phenomena are influenced by underlying factors which cannot be observed or measured
directly. They have applications in various areas including psychology, social sciences, education or economics, where
theoretical concepts such as intelligence, desirability or welfare cannot be measured directly but instead observable
indicators (or manifest variables) are given.

One possibility to fit latent variable models to data is to assume that the underlying distribution is Gaussian, and
therefore it is uniquely determined by its covariance structure. Then the maximum likelihood principle together with
structural assumptions on the underlying latent variable model can be used to fit the latent variable model to observed
data.

In contrast in this paper we try to avoid any assumption on the class of the underlying distributions. Given multivariate
random variables X and Y , we approximate them by linear combinations of suitable latent variables Z1 and Z2 and then use
nonparametric regression to study the relation between Z1 and Z2. In this way the whole procedure splits into two separate
problems: In a first step we fit a common factor analysis model to X and Y . And then we apply suitable nonparametric
regression techniques to analyze the relation between the latent variables in this model.
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The main trick in estimation of the common factor analysis model is to estimate the values of (Z1, Z2) in such a way that
the corresponding empirical distribution asymptotically satisfies the conditions that characterize the distribution of (Z1, Z2)
uniquely. This primarily requires independence of (Z1, Z2) of the random errors occurring in the manifest variables, and we
ensure this byminimizing some kind of distance between the empirical cumulative distribution function of all these random
variables and the product of the marginal cumulative distribution functions.

Our main theoretical result is that the empirical distribution of the estimated values of (Z1, Z2) converges weakly, with
probability 1, to the distribution of (Z1, Z2). We use this result to define the least squares estimates of the regression function
of (Z1, Z2). We show that our regression estimate is strongly consistent whenever the regression function is Lipschitz-
continuous and bounded. The finite sample size performance of our estimates is illustrated by applying them to simulated
data.

1.1. Discussion of related results

Surveys on latent variables and its applications can be found, e.g., in [1,2].
One way to determine latent variable models is the use of principal component analysis; see, e.g., Section 14.5 in Hastie,

Tibshirani and Friedman [3]. There the manifest variables are approximated by the best linear approximation of a given
rank. The obvious drawback is that in this case the sum of the latent variable and its random error is approximated. The
classical factor analysis model takes into account these random errors. If we assume that all random variables are Gaussian,
then the model can be fitted by maximum likelihood; see, e.g., Section 14.7 in Hastie, Tibshirani and Friedman [3]. In the
independent component analysis (described, e.g., in [4]) the latent variables are assumed to be independent, which resolves
any identifiability problem in the above approaches. However, this assumption is often not realistic in applications and
cannot be used in the context of regression estimation. Identifiability conditions for latent parameters in hidden Markov
models and random graph mixture models have been discussed in [5–7].

Independent factor analysis model which is often used for dimensionality reduction assumes that random variables are
generated by a linear model containing latent independent components and perturbed by an additive gaussian noise. The
density of observed variables has been estimated by a kernel estimate by Amato et al. [8]. A linear latent variable model
where observed variables depend linearly on unobservable latent variables has been analyzed in [9]. Under normality
assumption the covariance structure of the model is estimated by maximum likelihood and its asymptotic normality is
established. For ordered categorical data the latent variable model has been investigated by Breslaw and McIntosh [10]
and by Gebregziabher and DeSantis [11] for missing categorical data. It has been applied to finance by Bai and Ng [12].
A generalized linear latent variable model (GLLVM) has been estimated using Laplace approximation by Bianconcini and
Cagnone [13]. Similar model with semi-nonparametric specification of distribution of latent variables has been analyzed by
Irincheeva, Cantoni and Genton [14]. Bartolucci, Pennoni and Francis [15] considered latent Markov model and estimated
its parameters using EM algorithm and Bartolucci [16] applied it to detecting patterns of criminal activity.

A mixture of latent variables model was applied to clustering, classification and discriminant analysis; see [17].
Parsimonious Gaussian mixture models (PGMMs) are recently introduced model-based clustering techniques generalizing
mixtures of factor analyzers model and are based on a latent Gaussian mixture model. McNicholas [18] used PGMM and
Bayesian information criteria to perform model-based classification. A general latent variable model incorporating spatial
correlation and shifted dependencies has been analyzed by Christensen andAmemiya [19]. Colombo et al. [20] applied latent
variables to learning of high-dimensional acyclic graphs. In longitudinal data analysis one often encounters non-Gaussian
data. Hall et al. [21] used a latent Gaussian processmodel for prediction bymeans of functional principal component analysis
(PCA). The PCA approach has also been used to estimate latent variablemodels by Lynn andMcCulloch [22]. In amodelwhere
the number of manifest variables is the same for all latent variables, andwhere this number and the number of observations
of each of them increase, Bai and Ng [23] estimate the number of latent variables using an asymptotic principal component
analysis.

The previousworks on regression estimation in the context of latent variables were confined to parametricmodels, often
formulated with so-called structural equations models; for surveys, see, e.g., Skrondal and Rabe-Hesketh [2] or Schumacker
and Marcoulides [24]. In [25] a high-dimensional linear regression problem is considered, where a low dimensional latent
variable model determines the response variable. Principal component analysis is used to estimate the underlying latent
variables, and it is assumed that all variables have a Gaussian distribution. A generalization of Gaussian latent variable
models to the case that the manifest variables are indirect observations of normal underlying variables can be done via
generalized linear latent variable models; see, e.g., [26].

Our results generalize previously known results in so far that we do not need to impose any parametric structure on
the regression function considered and that we do not restrict the class of error distributions occurring in the model. Our
estimation of the common factor model is related to errors-in-variables models. In fact our estimation principle is based on
generalization of the uniqueness result for such models presented in [27].

Nonparametric regression estimation has been studied in the literature for a long time. The most popular estimates
for random design regression include kernel regression estimate (see, e.g., [28–33]), partitioning regression estimate (see,
e.g., [34,35]), nearest neighbor regression estimate (see, e.g., [36–39]), least squares estimates (see, e.g., [40]) or smoothing
spline estimates (see, e.g., [41]). The main theoretical results are summarized in the monograph by Györfi et al. [42]. To the
best of the authors’ knowledge, the application of nonparametric regression in the context of latent variables is new.
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