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a b s t r a c t

We investigate the problems of drift estimation for a shifted Brownianmotion and intensity
estimation for a Cox process on a finite interval [0, T ], when the risk is given by the energy
functional associated to some fractional Sobolev spaceH1

0 ⊂ Wα,2
⊂ L2. In both situations,

Cramér–Rao lower bounds are obtained, entailing in particular that no unbiased estimators
(not necessarily adapted) with finite risk in H1

0 exist. By Malliavin calculus techniques, we
also study super-efficient Stein type estimators (in the Gaussian case).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we focus on two problems of nonparametric (or, more rigorously, infinite-dimensional parametric) statis-
tical estimation: drift estimation for a shifted Brownian motion and intensity estimation for a Cox process, on a finite time
interval [0, T ]. Our investigation stems from the articles [10,11], where N. Privault and A. Réveillac developed an original ap-
proach to these problems, by employing techniques fromMalliavin calculus to study Cramér–Rao bounds and super-efficient
‘‘shrinkage’’ estimators, originally developed by C. Stein in [5] and then expanded in [13], to fit in infinite-dimensional
frameworks. Such a combination of these two powerful techniques can be cast into a more general picture, where Malliavin
calculus tools provide insights in statistics and more generally, on probabilistic approximations: let us mention here the
monograph [8], which collects many results of the fruitful meeting of another great contribution of C. Stein (the so-called
Stein method) with Malliavin calculus, and other recent articles such as [2,4,7,12].

As in [10,11], here we assume that the unknown function to be estimated belongs to the Hilbert space H1
0 (0, T ) (which

is a reasonable choice, at least in the case of shifted Brownian motion, because of the Cameron–Martin and Girsanov
theorems) but we move further by addressing the following question, which is rather natural but has apparently not yet
been considered: what about estimators that also take values in H1

0? Indeed, in [10,11], estimators are seen as functions
with values in L2([0, T ], µ) (where µ is any finite measure) or, equivalently, the associated risk is computed with respect to
the L2 norm and not the (stronger) H1

0 norm.
To investigate this problem, we first provide Cramér–Rao bounds with respect to different risks, by considering the

estimation in the interpolating fractional Sobolev space H1
0 ⊂ Wα,2

⊂ L2, for α ∈ [0, 1]. It turns out that no unbiased
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estimator exists in H1
0 (Theorem 2.5) and even in Wα,2, for α ≥ 1/2 (Theorem 2.9). Although a bit surprising, these results

reconcile with the following intuition: since the estimator is a function of the realization of the process, whose paths also
do not belong to H1

0 (nor Wα,2, for α ≥ 1/2), it is ‘‘too risky’’ to estimate (without bias) the parameter on that scale of
regularity. Therefore, besides answering a rather natural question, our results highlight the delicate role played by the
choice of different norms in such estimation problems, and one might expect that similar phenomena might appear in
other situations, technically more demanding, e.g., stochastic differential equations.

As a second task, we study super-efficient ‘‘shrinkage’’ estimators in the spaces Wα,2. It is often suggested on heuristic
grounds that the ideal situation for the problem of estimation would be to have an unbiased estimator with low variance,
but that allowing for a little bias may allow one to find estimators with lower risks, in many situations: we strongly rely
on the recent extensions and combinations of the original approach by Stein with Malliavin calculus to these frameworks
developed in [10,11]. Using a similar approach, we give sufficient conditions for the existence of super-efficient estimators
in Wα,2, for α < 1/2, and we give explicit examples of such estimators, in the case of Brownian motion (Example 3.3). In
the case of Cox processes, although it is possible to define a suitable version of Malliavin calculus and provide sufficient
conditions for Stein estimators, we are currently unable to provide explicit examples.

The paper is organized as follows. In Section 2 we deal with drift estimation for a shifted Brownian motion, addressing
Cramér–Rao lower bounds with respect to risks computed in H1

0 and fractional Sobolev spaces. In Section 3, we discuss
super-efficient estimators. Finally, analogous results on intensity estimators for Cox processes are given in Section 4.

2. Drift estimation for a shifted Brownian motion

In this section, we fix T ≥ 0 and let X = (Xt)t∈[0,T ] be a Brownian motion (on the finite interval [0, T ]), defined on
some filtered probability space (Ω, F, (Ft)t∈[0,T ], P). Instead of choosing a fixed (infinite-dimensional) space of parameters
Θ , we simply notice that our arguments apply to any set Θ of absolutely continuous, adapted processes ut =

 t
0 u̇sds (for

t ∈ [0, T ]) such that

(1) (u̇t)t∈[0,T ] satisfies the conditions of Girsanov’s theorem;
(2) Θ contains the Cameron–Martin space H1

0 ;
(3) for any u ∈ Θ , v ∈ H1

0 , one has u + v ∈ Θ .

Let us recall thatH1
0 (= H1

0 (0, T )) is defined as the space of (continuous) functions of the form h(t) =
 t
0 ḣ(s)ds, for t ∈ [0, T ],

with ḣ ∈ L2(0, T ). In particular, we may let Θ = H1
0 .

For u ∈ Θ , we define the probability measure Pu
= LuP , with

Lu = exp
 T

0
u̇sdXs −

1
2

 T

0
u̇2
s ds


.

Girsanov’s theorem entails that, with respect to the probability measure Pu, the process Xu
t = Xt − ut is a Brownian motion

on [0, T ].
We address the problem of estimating the drift with respect to Pu on the basis of a single observation of X (of course,

repeated and independent observations can improve the estimates, but this amounts to a simple generalization). Such a
problem is of interest in different fields of application: for example, we can interpret X as the observed output signal of some
unknown input signal u, perturbed by a Brownian noise. Such a problem is investigated, e.g., in [10], where the following
definition is given.

Definition 2.1. Any measurable stochastic process ξ : Ω × [0, T ] → R is called an estimator of the drift u. An estimator of
the drift u is said to be unbiased if, for every u ∈ Θ , t ∈ [0, T ], ξt is Pu-integrable and one has Eu(ξt) = Eu(ut).

In this section, we forego the specification of ‘‘the drift u’’ and simply refer to estimators. Moreover, we refer to the
quantity Eu(ξt − ut) as the bias of the estimator ξ (whenever it is well-defined).

By introducing as a risk associated to any estimator ξ the quantity

Eu(∥ξ − u∥2
L2(µ)

) = Eu
 T

0
|ξt − ut |

2µ(dt)


, (1)

where µ is any finite Borel measure on [0, T ], Privault and Réveillac provide the Cramér–Rao lower bound stated next for
adapted and unbiased estimators [10, Proposition 2.1]. In what follows, Θ being the space of all absolutely continuous,
adapted processes, whose derivatives satisfy the conditions of Girsanov’s theorem.

Theorem 2.2 (Cramér–Rao Inequality in L2(µ)). For any adapted and unbiased estimator ξ , one has

Eu(∥ξ − u∥2
L2(µ)

) ≥

 T

0
tµ(dt), for every u ∈ Θ . (2)

Equality is attained by the (efficient) estimator û = X.
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