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a b s t r a c t

In this paper, a new boundary element method without internal cells is presented for solving viscous

flow problems, based on the radial integration method (RIM) which can transform any domain integrals

into boundary integrals. Due to the presence of body forces, pressure term and the non-linearity of the

convective terms in Navier–Stokes equations, some domain integrals appear in the derived velocity and

pressure boundary-domain integral equations. The body forces induced domain integrals are directly

transformed into equivalent boundary integrals using RIM. For other domain integrals including

unknown quantities (velocity product and pressure), the transformation to the boundary is accom-

plished by approximating the unknown quantities with the compactly supported fourth-order spline

radial basis functions combined with polynomials in global coordinates. Two numerical examples are

given to demonstrate the validity and effectiveness of the proposed method.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Boundary element method (BEM) is a well-established numer-
ical method due to its distinct feature that only the boundary of the
problem needs to be discretized into elements. In the last few
decades, significant developments have been made in numerical
analysis of viscous fluid flows using boundary element method
[1–11]. However, due to the presence of body forces, pressure term
and non-linearity of the convective terms in Navier–Stokes equa-
tions, the resulting integral equations include domain integrals
[1–11]. In order to evaluate these integrals, the computational
domain of the problem needs to be discretized into internal cells.
Although the cell-integration scheme can give accurate results, the
discretization of the domain into cells makes, to a certain extent,
the BEM lose its advantage of only boundary discretization.

To circumvent the deficiency of domain integrals appearing in
the integral equations, various methods have been developed to
transform domain integrals into equivalent boundary integrals.
The most widely used approach is the so-called dual reciprocity
method (DRM) presented by Nardini and Brebbdia [12] for solid
dynamics. In this method, the domain integrals are transformed
to the boundary by expressing the body force effect quantities as
a series of prescribed basis functions and using the particular
solution derived from the differential operator of the problem
with these basis functions. In recent years, some attempts have

been made to apply the DRM to the Navier–Stokes equations.
Power and Partridge [8] successfully transformed the domain
integrals of the convective terms into boundary integrals by
employing DRM. Further improvement to this approach refers
to the works by Sarler and Kuhn [9], Power and Mingo [10], and
Florez et al. [11]. However, it is not an easy task to obtain
the particular solution for complicated problems. Moreover, the
treatment of different types of domain integrals involved in the
same integral equation is quite difficult for the DRM. Recently, an
effective transformation method, called the radial integration
method (RIM), was proposed by Gao [13,14], which not only
can transform any type of domain integrals to the boundary, but
also can remove various singularities appearing in the domain
integrals [14,15]. The distinct feature of RIM is that it can treat
different types of domain integrals appearing in the same integral
equation in a unified way since it does not resort to any particular
solutions.

Apart from the above transformation methods from the domain
integral to a boundary integral, the fast techniques (such as fast
multipole method [16–18] and wavelet transform method [18])
have also been used to reduce the complexity of domain integral
matrices associated with fluid flow problems. Since both the
methods can provide a sparse approximation of the fully populated
domain matrix, the computer memory and CPU time requirements
can been decreased considerably. However, the domain of the
problem still needs to be discretized into internal cells for evaluating
the domain integrals.

In this paper, a radial integration boundary element method
without internal cells for the analysis of viscous flow problems is
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presented based on the former works [1–3]. The domain integrals
appearing in velocity and pressure boundary-domain integral
equations are transformed into equivalent boundary integrals by
employing RIM. The domain integrals consisting of the known
body forces are analytically and directly transformed into the
boundary, while the transformation of domain integrals including
unknown quantities is carried out with the use of the compactly
supported fourth-order spline radial basis functions augmented
by polynomials to approximate the velocity product and pressure
as did in DRM. In Section 2, the basic velocity and pressure
boundary-domain integral equations proposed in the literatures
[1–3] will be reviewed. The transformation of domain integrals to
the boundary using RIM is described in detail in Section 3. Two
numerical examples are given in Section 4 to demonstrate the
validity of the presented method and is followed by a conclusion
in Section 5.

2. Review of complete boundary-domain integral equations
in viscous flows [1–3]

The governing differential equations in fluid mechanics can be
derived from the conservation laws of mass, momentum and
energy. In this paper, the flow is assumed to be under isothermal
condition, so conservation of energy is not concerned. The con-
tinuity and momentum equations in conservation form can be
expressed as:
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where, r is the fluid density, t the time, xi the ith component of
Cartesian coordinates, ui the ith velocity component, bi the body
force per unit mass (e.g. the gravity force) and sij the stress
tensor, and summation convection is adopted for the repeated
subscripts i and j. For Newtonian fluids, the constitutive relation-
ship between the stresses and velocities based on Stokes’ hypoth-
esis can be expressed as:

sij ¼�pdijþm
@ui

@xj
þ
@uj

@xi

� �
�

2

3
m @uk

@xk
dij ð3Þ

in which, p is the pressure, m the dynamics coefficient of viscosity
(constant here) and dij the Kronecker delta symbol. On the fluid
surface with outward normal nj, the relationship between the
stresses and the traction ti (force per unit area) can be written as:

ti ¼ sijnj ð4Þ

Applying the weighted residual formulation to Eq. (2) and
integrating over the domain O bounded with the boundary G, the
velocity boundary-domain integral equation for two-dimensional
(2D) and three-dimensional (3D) problems can be derived by
means of Gauss’s theorem and the use of integration by parts as
follows [1,2]:
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where x denotes the source point and y the field point, ð Þ,k ¼
@ð Þ=@yk. Fundamental solutions appearing in integral equation (5)
can be expressed as:
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where a¼b�1 with b¼2 for 2D and b¼3 for 3D problems, r is
the distance from the source point x to the field point y,
r,i ¼ @r=@yi ¼ yi�xi
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Based on velocity integral equation (5) and continuity equa-
tion (1), the pressure boundary-domain integral equation can be
derived after much manipulation as follows [3]:
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From Eq. (11), it can be seen that the boundary integral involving
the kernel tnij,i is hyper-singular, when the source point x approaches
the field point y. Therefore, the pressure integral equation (11) can
only be applied to internal points. For boundary points, based on the
traction-recovery method [19], the related formulation for evalua-
tion of the pressure can be derived as [2]:
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where tn is the traction along the normal direction of the boundary
surface and et the tangential strain rate.

The domain integral included in Eq. (11) with the kernel un

ij,ki is
strongly singular when the source point x approaches the field point
y. Special integration technique must therefore be adopted in order
to make the integral bounded. To do this, applying the singularity
separation technique [3,19] to evaluate the integral yields:Z
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