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a b s t r a c t

For Poisson processes taking values in a general metric space, we tackle the problem of
supervised classification in two different ways: via the classical k-nearest neighbor rule,
by introducing suitable distances between patterns of points; and via the Bayes rule, by
nonparametrically estimating the intensity function of the process. In the first approach
we prove that under the separability of the space, the rule turns out to be consistent. In
the second case, we prove the consistency of the rule by proving the consistency of the
estimated intensities. Both classifiers are shown to behave well under departures from the
Poisson distribution.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Spatial point processes are commonly used tomodel the spatial structure of points formedby the location of individuals in
space. The growing interest in such processes is related to thewide range of areas towhich they can be applied. For instance,
in ecology, they can be used to model the distribution of herds of animals, the spreading of nests of birds, the speckles of
trees or plants, or eroded areas in rivers or seas. In geography, the position of earthquakes or volcanoes can by modeled by
these such processes. They can be also used in astronomy to model the distribution of galaxies, in telecommunications, the
locations of subscribers, among others. There is a vast literature on this area: to name just a few, we refer to the recent book
Spatial Data analysis in Ecology and Agriculture Using R [19], which contains many other possible applications and techniques
as well as real data examples. In [11], the authors propose a hierarchical modeling of the interaction structure in a plant
community. The current interest in this kind of process also appears in connectionwith the new developments in functional
neuroimaging techniques (for example fMRI), where it is possible to record in real time the location of the activation zones
of the brain (see for instance [12,13,24]). In this context, in order to carry out a classification of people into healthy and
unhealthy ones, the differences between the neurons that fire under some stimuli can be measured by modeling them
as spatial Poisson processes with different intensities. In [17], the authors present a review of several distances used to
measure the differences between two spatial patterns in order to perform a clustering or classification (see also [23]). In a
different application area, crimemodeling andmapping using geospatial technologies (which include the use of spatial point
processes) is, quoting [16], ‘‘a topic of much interest mostly to academia, but also to the private sector and the government’’,
see also [9,1]. On this topic, we study, in Section 7, the spatial distribution of three different categories of crime which took
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place in Chicago between 2014 and 2016 by using an open access database containing, among other variables, the spatial
location of each crime.

The aim of this paper is to tackle the supervised classification problem for Poisson point processes by framing it within
the functional data setting. In particular, we prove the consistency of the k-nearest neighbors classifier in a more general
context by verifying the separability of the space and the Besicovitch condition (see [2,7] for a deeper treatment of this
topic). Via some simulation studies, we showhowdifferent choices of distances lead to different results for the classification.
In addition, following the ideas in [6], we also propose a nonparametric estimator of the intensity function, prove its
consistency, and plug it into the Bayes rule to get a consistent classifier. This last approach is similar to the one proposed
in [13] but we do not assume that the intensities vary in a parametric family. Through some simulation studies we show
the good performance of the k-NN rule so that it can be considered as an easier to implement alternative to the classical
Bayes.More precisely, the k-NN classifier does not require the estimation of the intensity function (which is computationally
expensive) and it can be employed in more general settings. Also, both rules could be combined in a new classifier as in [3]
since, although most of the classical applications of spatial point processes are for recorded locations in R2 or R3, we do not
restrict our approach to this case, instead allowing the realizations of the processes to live in a general metric space (such
as a functional metric space or a Riemannian manifold, among others).

The present paper is outlined as follows: in Section 2 we present the definitions and preliminary results that we will use
throughout the paper. Section 3.1 is devoted to introducing an estimator of the intensity of the process in order to plug it into
the Bayes rule and prove its consistency. In Section 3.2 we handle the problem of choosing a suitable distance to guarantee
the separability of the space and the satisfaction of the Besicovitch condition, in order to get the consistency of the k-NN
estimator. Section 4 is devoted to the study of the metric dimension of the space introduced in Section 3.2. In Section 5
we extend the results to a more general class of processes: the Gibbs processes. In Section 6 we perform some simulation
studies in order to assess the performance of the classification rules in different scenarios, to see the effect of changing some
parameters in the estimation, and to investigate its robustness when the model is not Poisson. Lastly, in Section 7, we carry
out the classification in a real data scenario. All the proofs are given in the Appendix.

2. Definitions and preliminary results

This section introduces some definitions and tools, which we will use throughout the paper. We will start with the
definition of the main object of this paper, the Poisson point process, and then we will turn to classification rules in our
context. For a deeper study of Poisson processes, we refer to [8,15,18].

2.1. Poisson processes

Let (S, ρ) be a separable and bounded metric space, endowed with a Borel measure ν, let us denote by B(S) the Borel
σ -algebra on S and by S∞ the set of elements (subsets) x of S whose cardinality, #x, is finite. That is,

S∞
≡ {x ⊂ S : #x < ∞}.

Let λ : S → R+ be an integrable function. Given a probability space (Ω,A, P), we will say that a function X : Ω → S∞ is a
Poisson process on S with intensity λ (we will denote X ∼ P (S, λ)) if:

• the functions NA : Ω → {0, . . . ,∞} defined by NA(ω) = #{ω : X(ω) ∩ A} are random variables for all A ∈ B(S);
• given n disjoint Borel subsets A1, . . . , An of S, the random variables NA1 , . . . ,NAn are independent;
• NA follows a Poisson process with mean µ(A) (we will write NA ∼ P {µ(A)}), with

µ(A) =


A
λ(ζ )dν(ζ ).

Let S∞
= 2S∞

be the σ -algebra of part of S∞. If X is a Poisson process, the distribution PX of X on S∞ is defined by
PX (B) = Pr(X ∈ B) for B ∈ S∞.

A well-known result (see [18]) for point processes states that if X1 and X2 are Poisson processes with intensities λ1 and
λ2, respectively, with values on a non-empty bounded metric space (S, ρ) such that µi(S) < ∞, i = 1, 2, the distribution
of X1 is absolutely continuous with respect to the distribution of X2 (PX1 ≪ PX2 ) with Radon–Nikodym derivative

fX1(x) = exp

µ2(S)− µ1(S)


ξ∈x

λ1(ξ)

λ2(ξ)
,

with 0/0 = 0. As a consequence, observe that if X2 ∼ P (S, 1), then, for all X ∼ P (S, λ), PX ≪ PX2 and

fX (x) = exp

ν(S)− µ(S)


ξ∈x

λ(ξ), (1)

where µ(S) =

S λdν.
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