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a b s t r a c t

There is growing interest in using the close connection between differential geometry
and statistics to model smooth manifold-valued data. In particular, much work has been
done recently to generalize principal component analysis (PCA), the method of dimension
reduction in linear spaces, to Riemannian manifolds. One such generalization is known as
principal geodesic analysis (PGA). This paper, in a novel fashion, obtains Taylor expansions
in scaling parameters introduced in the domain of objective functions in PGA. It is shown
this technique not only leads to better closed-form approximations of PGA but also reveals
the effects that scale, curvature and the distribution of data have on solutions to PGA and on
their differences to first-order tangent space approximations. This approach should be able
to be applied not only to PGA but also to other generalizations of PCA and more generally
to other intrinsic statistics on Riemannian manifolds.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Principal component analysis (PCA) is an important statistical method for dimension reduction and exploration of the
variance structure of data in a linear space. PCA has been generalized to data in smooth manifolds in various principal
geodesic procedures in which projections are done to explanatory submanifolds which serve as non-linear analogues of the
linear subspaces of PCA.

Principal geodesic analysis (PGA), as introduced in [9], successively identifies orthogonal explanatory directions in the
tangent space at the intrinsicmean of data and then exponentiates the span of the results to form explanatory submanifolds.
In [9] first-order tangent space approximations of PGA were formulated. Subsequently methods for exact computation of
PGA in specific manifolds were offered as in [17,27]. Then in [29], using the derivative of the exponential map and ODEs if
necessary in gradient descent algorithms, procedures to find exact solutions in a general class of manifolds were outlined.

As pointed out in [28], however, exact computation of PGA can be computationally complex and time-intensive, and thus
there is interest in determining the accuracy and effectiveness of first-order approximations to PGA. This will depend on the
distribution of data and its dispersion from the tangent space, the curvature and shape of the manifold in question and the
interaction of these factors.

For illustration, as in [28], consider the position of the ‘‘wrist’’ of a moving robotic arm while its ‘‘elbow’’ and ‘‘body’’
are fixed. In Fig. 1 the motion is restricted to a two-dimensional surface. To analyze the movement of the wrist one might
collect motion capture data as represented by the red dots in the figure. Formulating the surface as a Riemannian manifold
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Fig. 1. First PGA motion capture data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

and using intrinsic distances, an intrinsic mean of the data, µ, might be located. Then a geodesic through µ, represented by
the blue curve on the surface, that best fits the data or best accounts for the data’s variability might be identified.

One can find a linear direction of maximum variability, the unit vector v1,0 in Fig. 1, of data projected by the Riemannian
log map to the tangent space at the intrinsic mean. v1,0 will be an approximation of the unit vector tangent to the geodesic
v1. Generally the greater the local curvature of the surface the less accurate this approximation will be with scale of the data
or its dispersion from the intrinsic mean augmenting this effect. Conversely, projections to the tangent space will converge
to the data, intrinsic distances will converge to tangent space distances and v1,0 will converge to v1 as the data draws in
towards µ.

In this paper we quantify such effects by introducing scaling parameters on projections of data to the tangent space and
by obtaining Taylor expansions of solutions to PGA procedures in these parameters. Leading terms, such as v1,0 in Fig. 1,
will originate from the Euclidean structure in the tangent space. Next-order terms will demonstrate how local curvature
and scale interact to contribute to differences between first-order approximations and exact solutions. This not only allows
for more accurate closed-form approximations of PGA but should also contribute to a better understanding of the parts
of PGA and corresponding statistics. In this paper data in three types of symmetric spaces which have regular application
are considered. Also using [17,27,29] we can compute exact solutions in these spaces which allows for comparison and
testing.

1.1. Outline

Section 2 includes notations and definitions. In Section 3 a proposition which allows the expansion of PGA directions in
this paper is stated and proved. In Section 4 we review the geometry of the n-spheres and obtain and test expansions using
our proposition. We also carry out experiments on data sampled from an anisotropic log-normal distribution on the unit
n-sphere to show improved approximations. In Section 5 we review the geometry of the space of positive definite matrices
and obtain expansions using our proposition and computer algebra. In Section 6 we review the geometry of the special
orthogonal group and obtain expansions of PGA in this space. Also, in Section 6.3 we take a closer look at PGA in Lie groups
in [10] to show how expansions can give insight into the formulation of such intrinsic manifold statistics. In Section 7, using
expansions, we obtain improvements of the linear difference indicators introduced in [28]. In Section 8 we discuss the results
and consider their applications in similar contexts.

2. Notations and definitions

LetM be a Riemannian manifold with Riemannian metric p → ⟨ , ⟩p for p ∈ M . Given p ∈ M, TpM is the tangent space
at p. The unit sphere at TpM is then SpM = {X ∈ TpM; ⟨X, X⟩p = 1}. The Riemannian exponential and Riemannian log maps
are denoted by Expp : TpM → M and Logp : M → TpM , respectively. Given smooth manifolds M1 and M2, p ∈ M1 and
smooth mapping λ : M1 → M2 we denote the differential of λ at p by dpλ. Then given smooth function f : M → R and
p ∈ M the gradient of f at p is denoted ∇pf so that ⟨∇pf , X⟩p = dpf (X) for all X ∈ TpM . Differential geometry texts [6,25]
provide a background for and definitions of these concepts.

All the manifolds we will deal with in the paper will be of the class defined below.
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