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a b s t r a c t

We discuss nonparametric estimation of the distribution function G(x) of the autoregres-
sive coefficient a ∈ (−1, 1) from a panel ofN random-coefficient AR(1) data, each of length
n, by the empirical distribution function of lag 1 sample autocorrelations of individual AR(1)
processes. Consistency and asymptotic normality of the empirical distribution function and
a class of kernel density estimators is established under some regularity conditions on G(x)
asN andn increase to infinity. TheKolmogorov–Smirnov goodness-of-fit test for simple and
composite hypotheses of Beta distributed a is discussed. A simulation study for goodness-
of-fit testing compares the finite-sample performance of our nonparametric estimator to
the performance of its parametric analogue discussed in Beran et al. (2010).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Panel data can describe a large population of heterogeneous units/agents which evolve over time, e.g., households, firms,
industries, countries, stock market indices. In this paper we consider a panel where each individual unit evolves over time
according to order-one random coefficient autoregressive model (RCAR(1)). It is well known that aggregation of specific
RCAR(1)models can explain longmemory phenomenon,which is often empirically observed in economic time series (see [9]
for instance). More precisely, consider a panel {Xi(t), t = 1, . . . , n, i = 1, . . . ,N}, where each Xi = {Xi(t), t ∈ Z} is an
RCAR(1) process with (0, σ 2) noise and random coefficient ai ∈ (−1, 1), whose autocovariance

EXi(0)Xi(t) = σ 2
 1

−1

x|t|

1 − x2
dG(x) (1.1)
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is determined by the distribution function G(x) = Pr(a ≤ x) of the autoregressive coefficient. Granger [9] showed, for a
specific Beta-type distribution G(x), that the contemporaneous aggregation of independent processes {Xi(t)}, i = 1, . . . ,N ,
results in a stationary Gaussian long memory process {X(t)}, i.e.,

N−1/2
N
i=1

Xi(t) →fdd X(t) as N → ∞, (1.2)

where the autocovariance EX(0)X(t) = EX1(0)X1(t) decays slowly as t → ∞ so that


t∈Z |EX(0)X(t)| = ∞.
A natural statistical problem is recovering the distribution G(x) (the frequency of a across the population of individual

AR(1) ‘microagents’) from the aggregated sample {X(t), t = 1, . . . , n}. This problem was treated in [5,6,12]. Some related
results were obtained in [4,10,11]. Albeit nonparametric, the estimators in [5,12] involve an expansion of the density g = G′

in an orthogonal polynomial basis and are sensitive to the choice of the tuning parameter (the number of polynomials), being
limited in practice to very smooth densities g . The last difficulty in estimation ofG from aggregated data is not surprising due
to the fact that aggregation per se inflicts a considerable loss of information about the evolution of individual ‘micro-agents’.

Clearly, if the available data comprises evolutions {Xi(t), t = 1, . . . , n}, i = 1, . . . ,N , of all N individual ‘micro-agents’
(the panel data), we may expect a much more accurate estimate of G. Robinson [15] constructed an estimator for the
moments of G using sample autocovariances of Xi and derived its asymptotic properties as N → ∞, whereas the length
n of each sample remains fixed. Beran et al. [1] discussed estimation of two-parameter Beta densities g from panel AR(1)
data using maximum likelihood estimators with unobservable ai replaced by sample lag 1 autocorrelation coefficient of
Xi(1), . . . , Xi(n) (see Section 6), and derived the asymptotic normality togetherwith some other properties of the estimators
as N and n tend to infinity.

The present paper studies nonparametric estimation of G from panel random-coefficient AR(1) data using the empirical
distribution function:

GN,n(x) :=
1
N

N
i=1

1(ai,n ≤ x), x ∈ R, (1.3)

whereai,n is the lag 1 sample autocorrelation coefficient of Xi, i = 1, . . . ,N (see (3.3)). We also discuss kernel estimation
of the density g(x) = G′(x) based on smoothed version of (1.3). We assume that individual AR(1) processes Xi are driven
by identically distributed shocks containing both common and idiosyncratic (independent) components. Consistency and
asymptotic normality as N, n → ∞ of the above estimators are derived under some regularity conditions on G(x). Our
results can be applied to test goodness-of-fit of the distribution G(x) to a given hypothesized distribution (e.g., a Beta
distribution) using the Kolmogorov–Smirnov statistic, and to construct confidence intervals for G(x) or g(x).

The paper is organized as follows. Section 2 obtains the rate of convergence of the sample autocorrelation coefficientai,n
to ai, in probability, the result of independent interest. Section 3 discusses the weak convergence of the empirical process in
(1.3) to a generalized Brownian bridge. The Kolmogorov–Smirnov goodness-of-fit test for simple and composite hypotheses
of Beta distributed a is discussed in Section 4. In Section 5 we study kernel density estimators of g(x). We show that these
estimates are asymptotically normally distributed and their mean integrated square error tends to zero. A simulation study
of Section 6 compares the empirical performance of (1.3) and the parametric estimator of [1] to the goodness-of-fit testing
for G(x) under null Beta distribution. The proofs of auxiliary statements can be found in the Appendix.

In what follows, C stands for a positive constant whose precise value is unimportant and which may change from line to
line. We write →p, →d, →fdd for the convergence in probability and the convergence of (finite-dimensional) distributions
respectively, whereas ⇒ denotes the weak convergence in the space D[−1, 1] with the supremummetric.

2. Estimation of random autoregressive coefficient

Consider an RCAR(1) process

X(t) = aX(t − 1)+ ζ (t), t ∈ Z, (2.1)

where innovations {ζ (t)} admit the following decomposition:

ζ (t) = bη(t)+ cξ(t), t ∈ Z, (2.2)

where random sequences {η(t)}, {ξ(t)} and random coefficients a, b, c satisfy the following conditions:
Assumption A1. {η(t)} are independent identically distributed (i.i.d.) random variables (r.v.s) with Eη(0) = 0, Eη2(0) =

1, E|η(0)|2p < ∞ for some p > 1.
Assumption A2. {ξ(t)} are i.i.d. r.v.s with Eξ(0) = 0, Eξ 2(0) = 1, E|ξ(0)|2p < ∞ for the same p as in A1.
Assumption A3. b and c are possibly dependent r.v.s such that Pr(b2 + c2 > 0) = 1 and Eb2 < ∞, Ec2 < ∞.
Assumption A4. a ∈ (−1, 1) is a r.v. with a distribution function (d.f.) G(x) := Pr(a ≤ x) supported on [−1, 1] and satisfying

E
 1
1 − |a|


=

 1

−1

dG(x)
1 − |x|

< ∞. (2.3)
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