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a b s t r a c t

For general repeated measures designs the Wald-type statistic (WTS) is an asymptotically
valid procedure allowing for unequal covariance matrices and possibly non-normal
multivariate observations. The drawback of this procedure is its poor performance for
small to moderate samples, i.e., decisions based on the WTS may become quite liberal.
It is the aim of the present paper to improve the small-sample behavior of the WTS by
means of a novel permutation procedure. In particular, it is shown that a permutation
version of theWTS inherits its good large-sample properties while yielding a very accurate
finite-sample control of the type-I error as shown in extensive simulations. Moreover, the
new permutation method is motivated by a practical data set of a split plot design with a
factorial structure on the repeated measures.

© 2016 Elsevier Inc. All rights reserved.

1. Motivation and introduction

In many experiments in the life, social or psychological sciences the experimental units (e.g., subjects) are repeatedly
observed at different occasions (e.g., at different time points) or under different treatment conditions. This leads to certain
dependencies between observations from the sameunit and results in amore complicated statistical analysis of such studies.
In the context of experimental designs, the repeatedmeasures are considered as levels of the sub-plot factor. If several groups
are observed, these are considered as levels of the whole-plot factor.

Typical questions in repeated measures and profile analysis concern the investigation of a group effect, a non-constant
effect of time or different time profiles in the groups; see, e.g., the monographs of Davis [14, Section 4.3] or Johnson and
Wichern [25, Section 6.8]. Classical repeated measures models, where hypotheses are tested with Hotelling’s T 2 [19] or
Wilks’sΛ [45], assume normally distributed observation vectors and a common covariancematrix for all groups; see e.g., the
monograph of Davis [14]. In medical and biological research, however, the assumptions of equal covariance matrices and
multivariate normally distributed outcomes are often not met and a violation of themmay inflate the type-I error rates; see
the comments in Xu and Cui [46], Suo et al. [40] or Konietschke et al. [28].

Therefore, other procedures have been developed for repeated measures which are based on certain approximation
techniques [1,7–10,17,18,21,26,27,30,35,41,44]. However, these papersmainly assume themultivariate normal distribution
and only discuss methods for specific models which are also asymptotically only approximations, i.e., they do not even lead
to asymptotic exact tests. Another possibility is to apply a specific mixed model in the GEE context, see, e.g., the text books
by Verbeke and Molenberghs [42,43]. These methods require that the data stem from a specific exponential family. An
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Table 1
Means and empirical standard deviations of oxygen consumption of leukocytes in the
presence and absence of inactivated staphylococci.

O2-Consumption [µℓ]

Staphylococci
With Without
Time (min) Time (min)
6 12 18 6 12 18

Placebo
(n = 12)

Mean 1.618 2.434 3.527 1.322 2.430 3.425
Sd 0.157 0.303 0.285 0.193 0.263 0.339

Verum
(n = 12)

Mean 1.656 2.799 4.029 1.394 2.57 3.677
Sd 0.207 0.336 0.256 0.218 0.242 0.340

exception is given by the multivariate Wald-type test statistic (WTS), which is asymptotically exact. However, it is well
known that it requires large sample sizes to keep the pre-assigned type-I error level; see, e.g., [6,28,34].

To improve the small-sample behavior of the WTS in a MANOVA setting, Konietschke et al. [28] proposed different
bootstrap techniques. Another possibilitywould be to apply permutation procedures. It iswell known that permutation tests
are finitely exact under the assumption of exchangeability; see, e.g., [5,31,36] or [37–39] as well as [2,3,12] for examples. In
most of these examples, however, permutation tests are only applied in situations where the null distribution is invariant
under the corresponding randomization group.

A modified permutation procedure may also be applied in situations where this invariance does not hold; see, e.g.,
[11,23,24,33,34]. Themain idea in these papers is to apply a studentized test statistic and to use its permutation distribution
(based on permuting the pooled sample) for calculating critical values. This leads to particularly good finite-sample
properties even in case of general factorial designs with fixed factors [34]. It is the aim of the present paper to extend the
concept of permuting all data to the context of longitudinal data in general (not necessarily normal and homoscedastic) split
plot designs. Applied to the WTS this generalizes the results of Pauly et al. [34] and leads to astonishingly accurate results
despite the dependencies in repeated measurements data.

The methodology derived in the present paper is motivated by the following data example on the O2 consumption of
leukocytes. To examine the breathability of leukocytes, an experiment with 44 HSD-rats was conducted. A group of 22
rats was treated with a placebo, while the other 22 rats were treated with a substance supposed to enhance the humoral
immunity. 18 h prior to the opening of the abdominal cavity, all animals received 2.4 g sodium-caseinate for the production
of a peritoneal exudate rich on leukocytes. In order to obtain a sufficient amount of material the peritoneal liquid of 3–4
animals was mixed and the leukocytes therein were rehashed in an experimental batch. One half of the experimental batch
wasmixedwith inactivated staphylococci in a ratio of 100:1, the other half remained untreated and served as a control. Then,
the oxygen consumption of the leukocyteswasmeasuredwith a polarographic electrode after 6, 12 and 18min, respectively.
For each group separately, 12 experimental batcheswere carried out. Some descriptive statistics of the experimental batches
in both treatment groups are listed in Table 1.

Questions of interest in this example concern the effect of the whole-plot factor ‘treatment’, the effect of the sub-plot
factors ‘staphylococci’ and ‘time’ as well as interactions between these effects. We note that the empirical 6 × 6 covariance
matrices of the two groups appear to be quite different (see the supplement (see Appendix A) for details). This alsomotivates
the inclusion of unequal covariance matrices in our model. For such experimental designs, procedures are derived in this
paper that lead to good small-sample control of the type-I error while being asymptotically exact.

The paper is organized as follows. The underlying statistical model is described in Section 2, where we also introduce the
Wald-type (WTS) aswell as the ANOVA-type statistic (ATS) and state their asymptotic behavior. In Section 3, we describe the
novel permutation procedure used to improve the small sample behavior of the WTS. Afterwards, we present the results of
extensive simulation studies in Section 4, analyzing the behavior of the permuted test statistic in different simulation designs
with certain competitors. Additional simulation results have also been run for several other resampling schemes. They did
not show a better performance than the permutation procedure and are only reported in the supplementarymaterial, where
also various power simulations can be found. Themotivating data example is analyzed in detail in Section 5. The paper closes
with a brief discussion of our results in Section 6. All proofs are given in the supplementary material (see Appendix A).

2. Statistical model, hypotheses and statistics

2.1. Statistical model and hypotheses

To establish the general model, let

Yik = (Yik1, . . . , Yikti)
⊤, i = 1, . . . , a; k = 1, . . . , ni (2.1)

denote independent random vectors with distribution Fi and expectationµi = (µi1, . . . , µiti)
⊤

= E(Yi1) in treatment group
i. The underlying dependency structure is regulated by pairwise correlations. In particular, we do not assume any special
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