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a b s t r a c t

The fast boundary element method is applied for the three-dimensional large-scale thermal analysis of

fiber-reinforced composites based on a line inclusion model. In this approach, fibers are treated as

inclusions with temperature assumed constant over the circular cross-section and varying along the

length direction. Therefore, fibers can be meshed with line elements, making both the modeling

complexity and the number of unknowns significantly reduced. An interface integral boundary element

method introduced by Gao in 2009 (Engineering Analysis with Boundary Elements 2009; 33: 539–546)

is extended to generate a single-domain boundary integral equation for governing this line-inclusion

problem. Thus in principle, fibers with arbitrary length can be modeled. The fast multipole method is

employed for the fast analysis of such problems with large-scales. The largest composite model in a

personal desktop computer has the number of fibers reaching 20,000. Numerical results clearly

demonstrate validity of the proposed model and its potential for large-scale analysis of fiber-

reinforced composites.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Fiber composites have been widely used in modern industries
due to their unique mechanical, thermal and electrical properties.
In order to have a deep understanding of the reinforcement
mechanism of fibers and to help establish efficient fabrication
processes, much effort has been made on the study of the
relations between microstructures and overall properties of fiber
composites. As a boundary-type numerical method, the boundary
element method (BEM) is particularly suitable for the modeling
and numerical analysis of fiber composites since only the outer
surface of the matrix and the matrix-fiber interfaces need to be
meshed. This feature significantly reduces the meshing complex-
ity of the fiber composites compared with other volume-type
numerical methods. In addition, detailed distributions of physical
variables such as stresses, temperature or electrical potentials
along the matrix-fiber interfaces are readily obtained for further
investigations on the reinforcement path of fibers. Numerical
study on the modeling and analysis of fiber composites by the
BEM has been continuously reported [1–9].

Conventionally, the cost of storing the coefficient matrix
arising from the BEM is approximately OðN2

Þ, where N is the

number of unknowns. This requirement makes the solution of the
corresponding linear equation system by standard direct of
iterative algorithms significantly time-consuming. In order to
improve efficiency of the BEM, several fast algorithms have been
extended in this field to achieve fast and large-scale BEM solu-
tions. Of particular interest is the fast multipole method (FMM)
[10–14]. This algorithm was initially proposed for the fast solution
of potential problems with OðNÞ scales by novel tree-structure-
based operations. Extensive researches on the applications of the
fast multipole BEM (FMBEM) in the fields of electro-magnetics,
acoustics and elasticity have been reported during the last twenty
years. A comprehensive review of the FMBEM can be found in the
literature [15].

For the fast BEM modeling of fiber composites or similar
micro-heterogeneous materials, the FMBEM is the most reported
fast algorithm for the two- and three-dimensional elastic/thermal
studies [16–26]. Basically, standard multi-domain BEM formula-
tions are available to treat such inclusion problems. Significant
meshing simplification can also be achieved when inclusions or
holes have very simple shapes such as circles [27]. On the other
hand, fibers have special structural or physical properties that
may be used to simplify the associated BEM formulation. Com-
monly, fibers can be treated as rigid inclusions due to their much
higher values of stiffness or thermal conductivity than those of
the matrix. This rigid inclusion model makes the FMBEM very
efficient when treating carbon nanotube composites [16,18,21,23].
If the variations of fiber properties are of interest, a repeated similar
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sub-domain model can be used instead of the rigid inclusion model
to simplify the mathematical treatment of fibers with the same
shape [17,20]. However, three-dimensional fibers in the above-
mentioned literatures are meshed with surface elements. This
meshing requirement significantly increases the number of
unknowns for a fiber when it has a high value of aspect ratio.
Therefore, modeling sufficient number of long fibers becomes
difficult due to a huge number of unknowns generated compared
with those of short fibers. In addition, fibers with very large aspect
ratios result in an ill-conditioned coefficient matrix due to very
closed boundary points located on the opposite sides of a fiber.
An efficient way to overcome this problem is to make the fiber
radius become zero and to apply the dual BEM formulation to avoid
the ill-conditioning [28–31]. One can notice that a long fiber has its
physical variables (stresses or temperature) remaining approxi-
mately constant over the cross-sectional area compared with their
distributions along the fiber axial direction. This feature may be
used for further simplification of the long fiber meshing and allow
for significantly increased number of fibers to be modeled with
common computer resources.

In this paper, a line inclusion model is introduced as a
representative of the fiber for the thermal analysis of fiber
composites by the BEM. This model treats fibers as lines with
assigned circular cross-sections as the property. This assumption
is valid when a fiber has a large aspect ratio. Therefore, fiber
temperature varies only along the length direction and fibers can
be meshed with line elements. Compared with conventional
surface meshing, this simplified approach can increase the num-
ber of fibers to be analyzed at least one order of magnitude
higher. For each line element, the boundary integral happens on
the associated cylindrical surface in cylindrical coordinates.
In order to effectively treat fibers with arbitrary lengths, an
interface integral BEM initially proposed by Gao [32] is extended
herein to govern this line-inclusion problem with a single-domain
boundary integral equation. The FMM is adopted as the fast BEM
solver for the large-scale fiber composite problems. In the
numerical examples, validity and large-scale efficiency of the
proposed method for the thermal analysis of fiber composites
are demonstrated.

2. Interface integral BEM for line-inclusion problems

The boundary integral equation (BIE) governing the steady-
state heat conduction in a three-dimensional homogenous
domain is expressed as,
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where x and y denote the source and field points at the boundary
S, respectively; T and q are the boundary temperature and heat
flux, respectively; n is the outward normal to the boundary S; k is
the heat conductivity; cðxÞ is 0.5 for smooth boundaries; Gn

ðx,yÞ is
the kernel function for the three-dimensional heat conduction
problem defined as,
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with r denoting the distance between x and y. For the heat
conduction in multi-domains, Gao proposed an interface integral
BEM for governing this problem with a single-domain BIE
formulation given by [32],
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where S0
i is the outer boundary of the i-th domain denoted by Vi,

SI
i,j the interface of the i-th and j-th domains, ki the heat

conductivity of the i-th domain, n’ the normal direction to the
interface SI

i,j pointing from the i-th to the j-th domain. k̂ðxÞ and Dk

are given by [32],
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provided x is on the smooth boundaries. The advantage of Eq. (3)
is that integrals on both the outer boundaries and interfaces are
covered by a single equation formulation with the interfacial
continuity conditions automatically satisfied. As fiber composites
are commonly treated as two-phase structures, thermal analysis
of such special multi-domain problems can be achieved with a
simplified format of Eq. (3). Fig. 1 shows a model as a represen-
tative element of the fiber composites. Let V0 and VI denote the
matrix and fiber domains, respectively, S0 and SI the outer
boundaries of the matrix and the fiber-matrix interfaces, respec-
tively. SI is assumed to be perfectly bonded. By defining new
variables T̂ and q̂ as,
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Eq. (3) is rewritten for governing fiber composite problems as,
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where k0 and kI are heat conductivities of the matrix and fibers,
respectively. ĉðxÞ is defined as,
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Eq. (7) has the same formulation as Eq. (1) and can be solved
by the standard single-domain BEM. According to Eq. (6), only the
derivative of Gn needs to be integrated on SI. After T̂ and q̂ are
obtained by the BEM, T and q are readily derived with Eq. (6).

In order to discretize Eq. (7) we use collocation method and
piece-wise constant boundary element. The triangular element
has been reported as a widely used element for the discretization
of the matrix-fiber interfaces [18–20,23]. For the long fibers,
meshing with this kind of element typically generates a large
number of unknowns, thus having a significant limitation on the
total fiber count to be analyzed. In fact, temperature over the
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Fig. 1. Representative element of fiber composites.
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