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a b s t r a c t

Gaussian graphical models have become a popular tool to represent networks among
variables such as genes. They use the conditional correlations from the joint distribution
to describe the dependencies between gene pairs, and employ the precision matrix of
the genes. Because of the sparse nature of the gene networks and small sample sizes in
high dimensional genetic data, regularization approaches attracted much attention in aim
at obtaining the shrinkage estimates of the precision matrix. However, existing methods
have been focused on the Gaussian graphical model among genes; that is, they are only
applicable to a single level Gaussian graphical model. It is known that pathways are not
independent of each other because of shared genes and interactions among pathways.
Developingmultipathway analysis has been a challenging problem because of the complex
dependence structure among pathways. By considering the dependency among pathways
as well as the genes within each pathway, we propose a multilevel Gaussian graphical
model (MGGM) in which one level describes the networks for genes and the other for
pathways.We have developed amultilevel L1 penalized likelihood approach to achieve the
sparseness on both levels. In addition, we have developed an iterative weighted graphical
LASSO algorithm for MGGM. Our simulation results supported the advantages of our
approach; our method estimated the network more accurately on the pathway level and
sparser on the gene level. We also demonstrated the usefulness of our approach using a
canine genes-pathways data set.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Gaussian graphical models (Dempster, 1972), known as ‘‘covariance selection’’ or ‘‘concentration graph’’ models, have
recently become a popular tool to learn gene association networks. It assumes the nodes (i.e., gene expression data observed
in our study) are randomly sampled observational or experimental data from a multivariate Gaussian distribution. That is,
let V = {v1, . . . , vp} be the set of nodes (genes), and X1, . . . , Xp denote the expression data for the p genes; we assume that
(X1, . . . , Xp) ∼ N(0, Σ) with positive definite variance–covariance matrix Σ = (σij) and precision matrix Ω = Σ−1

= (ωij).
Then, the Gaussian graphical model uses the precision matrix Ω as the adjacent matrix (i.e. ωij ̸= 0 implies an association
between the gene pair andωij = 0 implies no association between the gene pair). A related but completely different concept
are the so-called gene ‘‘relevance networks’’, which are based on the covariance matrix Σ . The simple reason why Gaussian
graphicalmodels should be preferred over relevance networks for the identification of gene networks is that the off-diagonal
elements of Ω are proportional to partial correlations, while the off-diagonal elements of Σ are proportional to marginal
correlations. In the latter, interactions are defined through standard correlation coefficients so that missing edges denote
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marginal independence only. The correlation coefficient is a weak criterion for measuring dependence, because marginally,
i.e. directly and indirectly, more or less all genes will be correlated. This implies that zero marginal correlation is in fact
a strong indicator for independence. On the other hand, partial correlation coefficients do provide a strong measure of
dependence and, correspondingly, offer only aweak criterion of independence asmost partial correlation coefficients usually
vanish. And more often, with high dimension of genetic data, one would prefer concentrating the network size rather than
trapping in a large amount of relevances resulting from relevance networks.

A number of studies haveworked on estimatingΩ . A popular way to estimate the precisionmatrix for Gaussian graphical
models with small sample modeling is to introduce a penalty to the off-diagonal elements in Ω , which is feasible in
computing when n < p and which allows us to estimate the off-diagonal element simultaneously. The sparsity of the
obtained precision matrix would be able to take the nature of the genetic networks into account. Due to the small sample
size in gene expression data, researchers usually take a penalized log-likelihood approach and solve the following objective
function,

max
Ω

[
log{det(Ω)} − tr(SΩ) − λP(Ω)

]
,

where λ is a non-negative penalty parameter and P(·) is a penalty function on the precision matrix elements. A popular
penalty function is to use the least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996; Friedman et al.,
2008; Yuan and Lin, 2007; Levina et al., 2008), which can be applied to shrink the off-diagonal elements in the precision
matrix exactly to zero. Friedman et al. (2008), which is based on a coordinate descent procedure, is fast and can be adopted
easily bymany extensions of LASSO. For example, to remedy the bias issue in LASSO, Zou (2006) proposed the adaptive LASSO
penalty and used the reciprocal of the absolute value of a consistent estimator raised to some power as the weight for each
component. The solution can be obtained iteratively using weighted GLASSO. Another example is for the joint estimation of
multiple graphical models (Guo et al., 2011). They proposed a factor across data categories for each off-diagonal element to
represent the homogeneity network structure and put LASSO penalty on both the elements and factors. Their solution could
also be obtained from an iterative weighted GLASSO algorithm.

However, these recent studies only work on association among genes. That is, thesemethods can describe the association
between single genes only. It is known that pathways are sets of genes that serve a particular cellular or physiological
function. Hence pathways are not independent of each other because of shared genes and interactions among them. Multi-
pathway analysis has been a challenging problem because of the complex dependence structure among pathways. On the
other hand, subtle connections between genes in two pathways may indicate strong connection between two pathways but
can be ignored by individual gene network analysis. The main goal of our study is to develop a Gaussian graphical model for
the gene andpathwaynetwork. Thus, by considering the dependency amongpathways aswell as geneswithin each pathway,
we have proposed a multilevel Gaussian graphical model: one level is for pathway network structure and the second level
is for gene network structure. We will propose a hierarchically structured graphical model for this in Section 2.

This paper is organized as follows. In Section 2, we propose a multilevel Gaussian graphical model for the gene and
pathway network. Section 3 contains the penalized log-likelihood approach and the development of the algorithm for the
solution. In Section 4 we compare our method with GLASSO method for individual gene networks based on several criteria.
We introduce a definition of the degree of pathway-level connection. We also give a real data analysis in Section 5. Section 6
contains the conclusion and discussion.

2. Multilevel Gaussian graphical model

In this Section, we describe how to build a multilevel Gaussian graphical model for gene and pathway networks. First,
we will provide the precision matrix for the Gaussian graphical model, then we will explain how to extract the pathway
network information, and finally we will give a graphical illustration of the multilevel network model. Suppose we have p
genes, the expression data for eachwere denoted by X1, . . . , Xp; thewhole gene network can be represented by the precision
matrix Ω ,

Ω =

⎛⎜⎜⎝
ω11 ω12 · · · ω1p
ω21 ω22 · · · ω2p
...

...
. . .

...

ωp1 ωp2 · · · ωpp

⎞⎟⎟⎠ .

In this setting, if the off-diagonal elementωij = 0, it means the ith and jth genes are conditionally independent. Furthermore,
suppose these genes are in k predefined pathways, denoted by P1, . . . , Pk. Without loss of generality, we can re-denote
the genes as: X11, . . . , X1p1 , X21, . . . , X2p2 , . . ., Xk1, . . . , Xkpk , where p1, p2, . . . , pk are the number of genes in each pathway.
The conditional correlations among genes in the k and k′th pathways can be rewritten as a pk-by-pk′ sub-block precision
matrix Ωkk′ ,

Ωkk′ =

⎛⎜⎜⎜⎜⎜⎝
ωkk′

11 ωkk′
12 · · · ωkk′

1pk′

ωkk′
21 ωkk′

22 · · · ωkk′
2pk′

...
...

. . .
...

ωkk′
pk1 ωkk′

pk2 · · · ωkk′
pkpk′

⎞⎟⎟⎟⎟⎟⎠ .
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