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a b s t r a c t

The heat conduction problems in homogeneous media can be easily solved by the boundary element

method. The spatial variations of heat sources as well as material coefficients gives rise to domain

integrals in integral formulations for solution of boundary value problems in functionally gradient

materials (FGM), since the fundamental solutions are not available for partial differential equations

with variable coefficients, in general. In this paper, we present the development of the triple reciprocity

method for solution of axial symmetric stationary heat conduction problems in continuously non-

homogeneous media with eliminating the domain integrals. In this method, the spatial variations of

domain ‘‘sources’’ are approximated by introducing new potential fields and using higher order

fundamental solutions of the Laplace operator.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In functionally gradient materials (FGMs), the material coeffi-
cients (such as the thermal conductivity, etc.) are represented
by continuous functions of spatial coordinates. The pure boundary
integral formulation is available if the fundamental solution
is known. Thus, the boundary element method is applicable
to various boundary value problems in homogeneous media, where
the governing equations are given by partial differential equations
(PDE) with constant coefficients. In continuously non-homogeneous
media, however, the governing equations are given by PDE with
variable coefficients and the fundamental solution is not available,
in general. Having used the simplified fundamental solutions,
one obtains the integral formulation with involving also domain
integral which is so called boundary-domain formulation and the
boundary elements alone are insufficient for approximation of
unknown field variables. Besides the boundary elements certain
cells are required for the evaluation of domain integrals [1] in such a
formulation, hence, the dimensionality reduction merit of the BEM
is lost. A great effort has been expended to convert domain integrals
into boundary ones, e.g., the dual-reciprocity method has been
developed [2,3]. This approach, however, is not suitable for compli-
cated inhomogeneous problems, because the domain must
be divided into subdomains in order to achieve reasonable accuracy.

Several other excellent methods have been proposed without
internal cells [4–7]. Nevertheless, in all BEM formulations including
elastoplastic [15] analysis and unsteady problems [13,14], further
study is necessary to avoid internal cells.

Ochiai has proposed the triple-reciprocity method for elimina-
tion of domain integrals in isotropic steady heat conduction
problems [8,9]. In this method, the spatial variations of domain
‘‘sources’’ are approximated by introducing new potential fields and
using higher order fundamental solutions of the Laplace operator.
The standard BEM degrees of freedom are completely utilized. The
domain integrals are converted to boundary integrals and some
additional interior point unknowns are introduced. Since the
number of boundary elements much smaller than the number of
interior cells, this results in saving of that portion of the CPU time
which is needed for creation of the discretized algebraic equations
in the triple-reciprocity method as compared with the standard
BEM. Highly accurate solutions can be obtained solely by using a
few of the higher order fundamental solutions. The high accuracy of
the triple-reciprocity BEM consists in more accurate numerical
treatment of singular domain integrals involved in standard BEM.
In this paper, we developed the triple-reciprocity BEM for axially
symmetric stationary heat conduction problems in functionally
gradient materials. Making use of the axial symmetry and higher
order fundamental solutions for 3-d Laplace operator, the original
3-d problem is converted into the 2-d problem with eliminating the
domain integrals of heat sources as well as the gradient term due to
material inhomogeneity. The triple-reciprocity method has been
developed as an improvement of the multiple-reciprocity method
[11,12]. In case of laminated materials, a same method can be used
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to solve heat conduction. The presented method could be modified
to handle 2D or 3D problems in Cartesian coordinate systems.

Besides the triple-reciprocity, one can utilize any numerical
technique for treatment of considered domain integrals,
e.g. wavelet approximation, fast multiple method, etc. Though
the latter has been well developed within the BEM formulation,
the triple-reciprocity method is rather small modification of the
standard BEM formulation and can be easily implemented into
existing BEM codes.

1.1. Main notations

T Temperature.
lðqÞ, lS

1ðqÞ Heat conduction coefficient (thermal conductivity);
approximation for l(q).

oG;ðqÞ,W1
N
ðqÞ Volume density of heat sources; approximation

for w(q).
O,G Domain and its boundary in the plane of axial

symmetry.
r, z Radial and axial coordinates in cylindrical coordinate

system.
nr ,nz Radial and axial components of outer unit normal vector

on G.
d q�qj

� �
Dirac delta function.

G f½ � p,qð Þ, T ½f � p,qð Þ Higher order fundamental solution of the
Laplace operator and their integrals with respect to the
angular coordinate.

KðmÞ, EðmÞ Complete elliptic integrals of the first and second
kind.

2. Axial symmetric steady heat conduction

In this paper, we are concerned with the steady-state axial
symmetric heat conduction problem in inhomogeneous materials.
The governing equation can be expressed as

~rU lð ~qÞð ~rT ~qð ÞÞ
n o

¼�w ~qð Þ, ð1Þ

where T ~qð Þ is the temperature at point ~qAV , l ~qð Þ is the heat
conductivity, and ~r is the gradient operator in a 3-d coordinate
system. The tilde symbol is used for quantities (points or vectors)
related to a 3-d coordinate system in order to distinguish them
from the quantities related to the plane (r, z) introduced later. The
volume density of heat sources w ~qð Þ, is assumed to be a contin-
uous function.

2.1. Conversion of the integral formulation form 3-d into 2-d

In the case axially symmetric problems, the analyzed domain V

is generated by rotation of a 2-d domain O around the axis z, with
O lying in the plane involving the revolving axis (Fig. 1).

In axially symmetric problems, it is appropriate to utilize
cylindrical coordinate system, where ~r ¼ er@=@rþez@=@z,
~r

2
¼ @2=@r2þ 1=r

� �
@=@rþ@2=@z2. Furthermore, we shall use capital

letters for boundary points and prime coordinates for source
points in contrast to small letters for interior points and coordi-
nates without prime for field points. Because of the rotational
symmetry it is sufficient to know the solution of an axially
symmetric boundary value problems in the domain O, since all
physical fields are independent on the angular variable j. There-
fore the point ~q in Eq. (1) can be replaced by q, too.

As regards the continuity of the material coefficient l ~qð Þ ¼ lðqÞ,
we shall distinguish three different classes of problems: (i) l(q) is
a continuous and differentiable function within the analyzed
domain O, (ii) l(q) is a continuous function but ~rl is discontin-
uous at certain points qd in O, (iii) l(q) is discontinuous at certain
points qd in O.

As long as l(q) is a continuous function, Eq. (1) can be rewritten as

~r
2
TðqÞ ¼�W1ðqÞ�WN

1 ðqÞ, ð2Þ

where

W1ðqÞ ¼
~rlðqÞd ~rTðqÞ

lðqÞ
, WN

1 ðqÞ ¼
wðqÞ

lðqÞ
ð3Þ

are uniquely defined at qAO provided that the gradient of the
heat conduction coefficient is continuous. Otherwise, if W1(q) is
discontinuous, a special treatment will be required. If l(q)
suffers a discontinuity [l(qd)]n at certain points qd in O, the
gradients ~rlðqÞ give rise to additional point heat sources and a
special treatment of Eq. (1) is required because the ‘‘sources’’
specified by Eq. (3) would be non-unique and inapplicable. The
problems involving the discontinuities of the heat conduction
coefficient and/or its gradients will be discussed separately.
Now, we shall deal with problems governed by Eq. (2) with
continuous sources given by Eq. (3).

It is well known [1] that the fundamental solution of the Laplace
operator in 3-d problems is given as G½1� p, ~Q

� �
¼ 1=4p9p� ~Q 9
� �

, and
the integral representation of the temperature field governed by
Eq. (2) is

cðpÞTðpÞ ¼

Z
S

@T

@n
ðQ ÞG½1� p, ~Q

� �
�TðQ Þ

@G½1� p, ~Q
� �

@n ~Q
� �

2
4

3
5dS ~Q

� �

þ

Z
V

W1ðqÞþWN
1 ðqÞ

h i
G½1� p, ~qð Þ dV ~qð Þ, ð4Þ

where the free-term coefficient c(p)¼1 as long as p is an interior
point, while it depends on the local geometry of the boundary, if
p¼P lies on the boundary [1,16,22]. Since dS ~Q

� �
¼ R0dj0dGðQ Þ,

dV ~qð Þ ¼ r0dj0dOðqÞ and only the integral kernels are dependent on
the angular variable, this integration can be performed in closed
form and (4) results in [16]

Fig. 1. Sketch of domain O with interior and boundary points.
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