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a b s t r a c t

We consider the problem of testing significance of predictors in quantile regression, where
the sample size n and the number of predictors are allowed to increase together. Unlike
the quantile regression analysis for the τ th quantile at a given τ ∈ (0, 1), we aim to detect
any covariate that is significant for the conditional quantiles at any level of interest in a
given region, τ ∈ ∆. We use B-splines to approximate the quantile functions as τ varies
and consider the composite quantile regression to estimate the parameters. The proposed
score-type test admits normal approximations even in the presence of high dimensional
variables. Throughnumerical examples,wedemonstrate that the proposed test canprovide
higher power than existing tests designed for single quantile levels.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Quantile regressionhas becomeawidely usedmethod in evaluating the effect of regressors on the conditional distribution
of a response variable (Koenker, 2005). Compared with the least squares analysis, quantile regression is robust to the
misspecification of error distributions and characterizes the relationship between the response variable and the covariates
in a more comprehensive way. In quantile regression analysis, it is certainly of interest to develop methods for testing the
significance of certain predictors to inform rational decisions about their effects to the response. Koenker (2005) considers
Wald-type and score-type tests at a givenquantile level. Kocherginsky et al. (2005) propose a time-saving resamplingmethod
based on a modification of the Markov chain marginal bootstrap to construct confidence intervals. Volgushev et al. (2013)
consider the problem of significance tests in multivariate nonparametric quantile regression.

Much of the existing literature considers significance tests at a given quantile level with the number of regressors p fixed
in themodel. In this paper, instead of focusing on a specific quantile level τ , we consider an interval∆ of quantile levels with
high dimensional variables. For example, ∆ may be chosen as [0.4, 0.6] instead of just τ = 0.5 if we would like to detect
variables that impact the center of the conditional distributions, or [0.75, 0.9] if we are interested in the upper tails. This
approach is partly motivated by the work by Zheng et al. (2015), where they propose a globally concerned model selection
strategy that examines regression quantiles over a set of quantile levels∆.

There are potential advantages of considering a set of quantile levels instead of a single or multiple quantile levels. First,
we may gain power in the statistical analysis by polling information across quantile levels. Second, it is often difficult to
justify the choice of one quantile level, whether it is τ = 0.75 or 0.9, if we are interested in the upper quantiles. When we
speak of upper quantiles, it can make better sense if we consider all τ ≥ 0.75 up to a reasonable upper bound.

For testing over a specified range of quantiles, Koenker and Machado (1999) exploit the Wald processes or Rankscore
process by using the asymptotic behavior of the Bessel process under fixed p-asymptotics. We consider high-dimensional
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settings by allowing p to increase with n and use B-splines to approximate the quantile functions. We exploit a composite
quantile regression estimate (Zou and Yuan, 2008) and construct a score-type test based on the asymptotic normality of the
statistic.

The rest of the paper is organized as follows. We introduce the proposed score-type test in Section 2. In Section 3, we
investigate the theoretical properties of the test statistic. In Section 4, we evaluate the finite sample performance of the
proposed method by Monte Carlo simulation. In numerical examples, we demonstrate that our proposed test preserves the
type I error and provides higher power, compared to the existing tests. A real data example is given in Section 5. Some
concluding remarks are given in Section 6. Technical proofs are deferred to Appendix.

2. The proposed method

2.1. The model

Consider the following linear quantile model: for i = 1, . . . , n,

yi = xTi α(τ ) + zTi β(τ ) + ϵi(τ ) for τ ∈ ∆, (1)

where ∆ ⊂ (0, 1) is an interval of quantile levels of interest, and xi ∈ Rpn and zi ∈ Rqn are ith fixed design vectors. Here pn
and qn can increase with n. The random variables ϵi(τ )s are independent across i and satisfy P{ϵi(τ ) ≤ 0 | xi, zi} = τ for all
τ ∈ ∆ and i = 1, . . . , n. The vectors α(τ ) ∈ Rpn and β(τ ) ∈ Rqn are the τ th conditional quantile coefficients in the sense
that xiTα(τ ) + zTi β(τ ) is the τ th conditional quantile of yi given xi and zi. Let

y = [y1, . . . , yn]T , X = [x1, . . . , xn]T , Z = [z1, . . . , zn]T , ϵ(τ ) = [ϵ1(τ ), . . . , ϵn(τ )]T .

The above linear quantile model can be written in the following matrix form:

y = Xα(τ ) + Zβ(τ ) + ϵ(τ ). (2)

We assume that each column of thematrices X and Z is normalized tomean zero and the L2 norm
√
n. Throughout the paper,

we are interested in testing

H0 : β(τ ) = 0qn for all τ ∈ ∆ versus H1 : β(τ ) ̸= 0qn for some τ ∈ ∆. (3)

2.2. The method

To assess the hypothesis (3), we use B-spline basis functions to approximate the quantile function α(τ ) for τ in the
smallest interval that contains ∆. Following Schumaker (1981), Pena (1997), Kim (2007), and Wang et al. (2009), let
Πmn (τ ) = {π1(τ ), . . . , πmn+l(τ )}T be the normalized B-spline basis functions of order l with mn quasi-uniform knots. For
simplicity, let Kn = mn + l. We approximate α(τ ) in (2) by a linear combination of πj(τ )s, i.e., α(τ ) ≈ ΘΠmn (τ ), whereΘ is
the pn × Kn spline coefficient matrix. Hence, under H0, the model (2) can be approximated by

y ≈ XΘΠmn (τ ) + ϵ(τ ).

In the theoretical analysis in Section 3, we reflect the approximation errors induced by the spline approximation. Let
τ1, . . . , τbn be the equally spaced quantile levels from the set∆ = [∆1,∆2].We fix τ1 = ∆1 and τbn = ∆2 so that the distance
between neighborhood quantiles are all equal to (∆2 −∆1)/(bn − 1). Under H0, the spline coefficient matrix estimate Θ̂ is
obtained by the following composite quantile regression (Zou and Yuan, 2008):

Θ̂ = arg min
Θ∈Rpn×Kn

1
nbn

bn∑
k=1

n∑
i=1

ρτk{yi − xTi ΘΠmn (τk)}, (4)

where ρτ (u) = u(τ − I{u<0}) is the quantile loss function (Koenker and Basset, 1978). Let

v
(k)
i = vec(Πmn (τk) ⊗ xi) for k = 1, . . . , bn ; i = 1, . . . , n.

Then, (4) can be rewritten as

θ̂ = arg min
θ∈RpnKn

1
nbn

bn∑
k=1

n∑
i=1

ρτk{yi − (v(k)i )T θ}, (5)

where θ̂ = vec(Θ̂). Let v(k) = [v
(k)
1 |, . . . , | v

(k)
n ]

T be an n×pnKn matrix for k = 1, . . . , bn. Let f
(τ )
i (t) be the conditional density

function of ϵi(τ ) given wi := (xTi , z
T
i )

T
∈ Rpn+qn evaluated at t . Let H (k)

= diag(f (τk)1 (0), . . . , f (τk)n (0)) be a diagonal matrix of
the conditional densities at 0. Let

P (k)
= H (k)X[XT (H (k))2X]

−1XTH (k), P̃ (k)
= In − P (k), Z (k)

= P̃ (k)Z .
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