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a b s t r a c t

Two routes most commonly proposed for accurate inference on a scalar interest parameter
in the presence of a (possibly high-dimensional) nuisance parameter are parametric sim-
ulation (‘bootstrap’) methods, and analytic procedures based on normal approximation to
adjusted forms of the signed root likelihood ratio statistic. Under some null hypothesis
of interest, both methods yield p-values which are uniformly distributed to error of
third-order in the available sample size. But, given a specific dataset, what is the formal
relationship between p-values calculated by the two approaches? We show that the two
methodologies give the same inference to second order in general: the analytic p-value
calculated from a dataset will agreewith the bootstrap p-value constructed from that same
dataset to O(n−1), where n is the sample size. In practice, the agreement is often startling.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Weare concernedwith inference, primarily using the signed root likelihood ratio statistic R, on a scalar interest parameter
ψ , in the presence of a (possibly high-dimensional) nuisance parameter φ, based on a random sample of size n from an
assumed parametric distribution depending on θ = (ψ, φ). Two routes most commonly proposed for accurate inference on
ψ are parametric simulation (‘bootstrap’) methods, (see DiCiccio et al., 2001; Lee and Young, 2005) and analytic procedures
based on normal approximation to adjusted forms of R, obtained via small-sample asymptotics. Prominent among analytic
procedures is use of a normal approximation to the R∗ statistic introduced by Barndorff-Nielsen (1986, 1991). Our purpose
here is to elucidate the formal relationship between the bootstrap approach to inference, specifically as applied to the signed
root statistic R, and the analytic approach based on R∗. In this paper, we examine the specific relationships between the
bootstrap and analytic methods for estimation of p-values for inference onψ: particular focus in our numerical illustrations
will be with estimation of p-values under the null hypothesis. We use results from DiCiccio et al. (2015a, b) to show that
from a theoretical perspective, quite generally, analytic and bootstrap p-values are equivalent to O(n−1): the two p-values
constructed from the same dataset agree to that order. Several examples showing close empirical agreement of p-values,
even for very small sample sizes n, are provided.

2. Problem setting

Suppose Y = (Y1, . . . , Yn) is a continuous random vector whose distribution depends on a parameter θ = (θ1, . . . , θd) =

(ψ, φ), where ψ is a scalar parameter of interest and φ is a vector of nuisance parameters, of dimension d − 1. Further
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suppose that it is required to test the null hypothesis H0 : ψ = ψ0 against a one-sided alternative. We wish to compare, for
a given dataset, the p-values derived from analytic approximation to the distribution of R∗ with the p-values derived from
the bootstrap distribution of R.

For testing the null hypothesis against one-sided alternatives, we may use the signed root of the usual likelihood ratio
statistic

R(ψ) = sgn(ψ̂ − ψ)[2{L(θ̂ ) − L(θ̂ψ )}]1/2 = sgn(ψ̂ − ψ)[2{M(ψ̂) − M(ψ)}]1/2,

where L(θ ) is the log-likelihood function, θ̂ = (ψ̂, φ̂) is the global maximum likelihood estimator, θ̂ψ = (ψ, φ̂ψ ) is the
constrained maximum likelihood estimator given ψ , and M(ψ) = L(θ̂ψ ) is the log profile likelihood function for ψ . Under
the null hypothesis, the repeated sampling distribution of R is standard normal to error of order Op(n−1/2). The analytic route
to achieve higher-order accuracy in such an inferential setting is based on a standard normal approximation to an adjusted
version of R(ψ), denoted by R∗(ψ).

The development of R∗(ψ) is as follows. Suppose that the log-likelihood function is written as L(θ; θ̂ , a), with (θ̂ , a)
minimal sufficient, where a is ancillary, having a distribution which, at least approximately, does not depend on θ . Such
a decomposition holds, trivially, in full exponential families, where θ̂ is minimal sufficient and no ancillary a is required, and
in transformation models, where the maximal invariant serves as the ancillary a. As noted by Severini (2000, §6.5), beyond
the exponential family and transformation model contexts, it may be difficult to establish that such a decomposition holds,
but general approximations, in particular constructions of approximate ancillaries, are possible which still allow validity of
the properties discussed here for analytic methods of inference. A drawback of such constructions is that explicit expression
of the log-likelihood in terms of (θ̂ , a) may then be intractable. This does not affect the calculation of a bootstrap p-value,
but would require approximation to the R∗ statistic, which we now describe.

The R∗ statistic is defined (Barndorff-Nielsen, 1986, 1991) as

R∗(ψ) = R(ψ) + R(ψ)−1 log(U(ψ)/R(ψ)),

with

U(ψ) =

⏐⏐⏐⏐⏐L;θ̂ (θ̂ ) − L
;θ̂ (θ̂ψ )

Lφ;θ̂ (θ̂ψ )

⏐⏐⏐⏐⏐ /{|jφφ(θ̂ψ )|1/2|j(θ̂ )|1/2}.
Here j(θ ) = (−Lrs(θ )) denotes the observed information matrix, with Lrs(θ ) = ∂2L(θ )/∂θ r∂θ s, where the indices r, s range
from 1, . . . , d, and jφφ denotes the (d − 1) × (d − 1) sub-matrix corresponding to components of the nuisance parameter φ.
Also,

L
;θ̂ (θ ) ≡ L

;θ̂ (θ; θ̂ , a) =
∂

∂θ̂
L(θ; θ̂ , a), Lφ;θ̂ (θ ) ≡ Lφ;θ̂ (θ; θ̂ , a) =

∂2

∂φ∂θ̂
L(θ; θ̂ , a).

The conditional distribution of the test statistic R∗(ψ) = R+ R−1 log(U/R) given a, and hence the unconditional distribution
under repeated sampling, is standard normal to error of order Op(n−3/2). An alternative to the standard normal distribution
for approximating tail probabilities of R∗(ψ) is the generalized Lugannani–Rice formula (Barndorff-Nielsen, 1991); to error
of order O(n−3/2),

pr(R∗
≤ r∗

⏐⏐a; θ ) = Φ(r∗) = Φ(r) + ϕ(r)(1/r − 1/u), (1)

where r∗
= r + r−1 log(u/r). The simulation route to inference in this setting is based on the parametric bootstrap

approximation to the marginal distribution of R(ψ). This is defined as the sampling distribution of R(ψ) under the model
specified by parameter value θ̂ψ , the constrained maximum likelihood estimator for the observed data sample: see DiCiccio
et al. (2001) and Lee and Young (2005). This parametric bootstrap yields p-values which are, under repeated sampling and
supposing ψ is the true value of the interest parameter, uniformly distributed to error of order O(n−3/2).

We consider first a motivating example.

Example 1 (Extreme Value Location-Scale). Let {X1, . . . , Xn} be a random sample from the Weibull density

f (x;β, γ ) = γ β(γ x)β−1 exp{−(γ x)β}, x > 0,

with interest parameter β . Defining Yi = log Xi, the Yi are random samples from an extreme value distribution EV (µ,ψ), a
location-scale family,with scale and location parametersψ = β−1, µ = − log γ . Interest is in inference on the scale param-
eter of the extreme value distribution. This distribution constitutes an ancillary statistic model: inference for ψ conditions
on the observed data value of the ancillary a = (a1, . . . , an), with ai = (yi − µ̂)/ψ̂ . Exact conditional inference is analytically
straightforward, but requires numerical integration for its calculation: see, for instance, Pace and Salvan (1997, §7.6).
Here, it is easily verified that the conditional distribution of R(ψ) given a does not depend on the nuisance parameter µ, so
the exact conditional inference is equivalent to a ‘conditional bootstrap’, whichwould be based on simulating the conditional
distribution of R(ψ) given a, modulo the error introduced by the finite simulation required in practice. It is of interest to see
how well this exact conditional inference is approximated by a marginal bootstrap, which ignores the conditioning and is
based on simulation of the marginal distribution of R(ψ).
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