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a b s t r a c t

Continuous random processes and fields are regularly applied tomodel temporal or spatial
phenomena in many different fields of science, and model fitting is usually done with
the help of data obtained by observing the given process at various time points or spatial
locations. In these practical applications sampling designswhich are optimal in some sense
are of great importance.We investigate the properties of the recently introduced K-optimal
design for temporal and spatial linear regression models driven by Ornstein–Uhlenbeck
processes and sheets, respectively, and highlight the differences compared with the
classical D-optimal sampling. A simulation study displays the superiority of the K-optimal
design for large parameter values of the driving random process.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Continuous randomprocesses and fields are regularly applied tomodel temporal or spatial phenomena inmany different
fields of science such as agriculture, chemistry, econometrics, finance, geology or physics. Model fitting is usually done with
the help of data obtained by observing the given process at various time points or spatial locations. These observations
are either used for parameter estimation or for prediction. However, the results highly depend on the choice of the data
collection points. Starting with the fundamental works of Hoel (1958) and Kiefer (1959), a lot of work has been done
in the field of optimal design. Here by a design we mean a set ξ = {x1, x2, . . . , xn} of distinct time points or locations
where the investigated process is observed, whereas optimality refers to some prespecified criterion (Müller, 2007). In
case of prediction, one can use, e.g., the Integrated Mean Square Prediction Error criterion, which minimizes a functional
of the error of the kriging predictor (Baldi Antognini and Zagoraiou, 2010; Baran et al., 2013) or maximize the entropy of
observations (Shewry and Wynn, 1987). In parameter estimation problems, a popular approach is to consider information
based criteria. AnA-optimal designminimizes the trace of the inverse of the Fisher informationmatrix (FIM) on the unknown
parameters, whereas E-, T- and D-optimal designs maximize the smallest eigenvalue, the trace and the determinant of the
FIM, respectively (see, e.g., Pukelsheim, 1993; Abt andWelch, 1998; Pázman, 2007). The latter design criterion for regression
experiments has been studied by several authors both in uncorrelated (see, e.g., Silvey, 1980) and in correlated setups (Müller
and Stehlík, 2004; Kiseľák and Stehlík, 2008; Zagoraiou and Baldi Antognini, 2009; Dette et al., 2015). However, there are
several situations when D-optimal designs do not exist, for instance, if one has to estimate the covariance parameter(s) of
an Ornstein–Uhlenbeck (OU) process (Zagoraiou and Baldi Antognini, 2009) or sheet (Baran et al., 2015). This deficiency can
obviously be corrected by choosing a more appropriate design criterion. In case of regression models a recently introduced
approach, which optimizes the condition number of the FIM, called K-optimal design (Ye and Zhou, 2013), might be a

∗ Fax: +36 52 512996.
E-mail address: baran.sandor@inf.unideb.hu.

http://dx.doi.org/10.1016/j.jspi.2017.02.003
0378-3758/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jspi.2017.02.003
http://www.elsevier.com/locate/jspi
http://www.elsevier.com/locate/jspi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jspi.2017.02.003&domain=pdf
mailto:baran.sandor@inf.unideb.hu
http://dx.doi.org/10.1016/j.jspi.2017.02.003


S. Baran / Journal of Statistical Planning and Inference 186 (2017) 28–41 29

reasonable choice. K-optimal designs try to minimize the error sensitivity of experimental measurements (Maréchal et al.,
2015) resulting in more reliable least squares estimates of the parameters. However, one can also consider the condition
number of the FIM as a measure of collinearity (Rempel and Zhou, 2014), thus minimizing the condition number avoids
multicollinearity.

In contrast to the standard information based design criteria, the condition number (and the corresponding optimization
problem) is not convex, only quasiconvexity holds (Maréchal et al., 2015). Hence, finding a K-optimal design usually requires
non-smooth algorithms. Ye and Zhou (2013) consider polynomial regressionmodels and solve theK-optimal design problem
with nonlinear programming, whereas in Rempel and Zhou (2014) simulated annealing is applied. In this class of models
K-optimal designs are quite similar to their A-optimal counterparts. Further, Maréchal et al. (2015) investigate Chebyshev
polynomial models and suggest a two-step approach to find a probability distribution approximating the K-optimal design.

Further, one should also mention that K-optimal design is invariant to the multiplication of the FIM by a scalar, so it does
not measure the amount of information on the unknown parameters. Besides this, K-optimality obviously does not have
meaning for one-parameter models, but in this case multicollinearity does not appear either.

All regression models where K-optimality has been investigated so far consider uncorrelated errors, but there are no
results for correlated processes. In the present paper we derive K-optimal designs for estimating the regression parameters
of simple temporal and spatial linear models driven by OU processes and sheets, respectively, and compare the obtained
sampling schemes with the corresponding D-optimal designs. Both increasing domain and infill equidistant designs are
investigated and the key differences between the two approaches are highlighted. Our aim is to give a first insight into the
behavior of K-optimal designs in a correlated setup, but many results presented here can be generalized to models with
different base functions and/or correlation structures (see, e.g., Näther, 1985; Dette et al., 2016). This is a natural direction
for further research.

2. Ornstein–Uhlenbeck processes with linear trend

Consider the stochastic process

Y (s) = α0 + α1s + U(s) (2.1)

with design points taken from a compact interval [a, b] ⊂ R, where U(s), s ∈ R, is a stationary OU process, that is a zero
mean Gaussian process with covariance structure

EU(s)U(t) =
σ 2

2β
exp


−β|s − t|


, (2.2)

with β > 0, σ > 0. We remark that U(s) can also be represented as

U(s) =
σ

√
2β

e−βsW

e2βs, (2.3)

where W(s), s ∈ R, is a standard Brownian motion (see, e.g., Shorack and Wellner, 1986; Baran et al., 2003). In the present
study the parametersβ and σ of the driving OU processU are assumed to be known. However, a valuable direction for future
research will be the investigation of models where these parameters should also be estimated. We remark that the same
type of regression model appears in Müller and Stehlík (2004), where the properties of D-optimal design under a different
driving process are investigated.

For model (2.1), the FIM Iα0,α1(n) on the unknown parameters α0 and α1 based on observations

Y (si), i =

1, 2, . . . , n

, n ≥ 2, equals

Iα0,α1(n) = H(n)C(n)−1H(n)⊤, where H(n) :=


1 1 · · · 1
s1 s2 · · · sn


,

and C(n) is the covariance matrix of the observations (see, e.g., Xia et al., 2006; Pázman, 2007). Without loss of generality,
one can set the variance of U to be equal to one, which reduces C(n) to a correlation matrix. Due to the particular structure
of C(n) resulting in a special form of its inverse (see Appendix A.1 or Kiseľák and Stehlík, 2008), a short calculation shows
that

Iα0,α1(n) =


L1(n) L2(n)
L2(n) L3(n)


,

with

L1(n) := 1 +

n−1
i=1

1 − pi
1 + pi

, L2(n) := s1 +

n−1
i=1

si+1 − sipi
1 + pi

,

L3(n) := s21 +

n−1
i=1

(si+1 − sipi)2

1 − p2i
,

(2.4)
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