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a b s t r a c t

We construct a sequential monitoring procedure for changes in the tail index and extreme
quantiles of β-mixing random variables, which can be based on a large class of tail index
estimators. The assumptions on the data are general enough to be satisfied in a wide range
of applications. In a simulation study empirical sizes and power of the proposed tests are
studied for linear and non-linear time series. Finally, we use our results to monitor Bank
of America stock log-losses from 2007 to 2012 and detect changes in extreme quantiles
without an accompanying detection of a tail index break.

© 2016 Elsevier B.V. All rights reserved.

1. Motivation

The tail index of a random variable is arguably one of the most important parameters of its distribution: It determines
some fundamental properties like the existence ofmoments, tail asymptotics of the distribution and the asymptotic behavior
of sums and maxima. As a measure of tail thickness, the tail index is used in fields where heavy tails are frequently
encountered, such as (re)insurance, finance, and teletraffic engineering (cf. Resnick, 2007, Sec. 1.3, and the references cited
therein). Particularly in finance, the closely related extreme quantiles play a prominent role as a risk measure called Value-
at-Risk (VaR).

The use of the variance as a risk measure has a long tradition in finance. Under Gaussianity the variance completely
determines the tails of the distribution, which is no longer the case with heavy-tailed data. Hence, in order to assess the tail
behavior of a time series, practitioners often estimate the tail index or an extreme quantile, the implicit assumption being
their constancy over time. There are several suggestions in the literature on how to test this crucial assumption: Quintos et al.
(2001) developed so called recursive, rolling and sequential tests for independent and GARCH data for tail index constancy
based on the Hill (1975) estimator. Kim and Lee (2011) investigated their tests formore generalβ-mixing time series. Taking
a likelihood approach for independent data, Dierckx and Teugels (2010) focus on breaks in the tail index for environmental
data. Tests based on other estimators than the Hill (1975) estimator were first proposed by Einmahl et al. (2016)
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for independent and Hoga (2017+b) for dependent data. To the best of our knowledge the only paper dealing with changes
in extreme quantiles is Hoga (2017+a). All these tests are of a retrospective nature.

We are not aware of any work on online surveillance methods for constancy of the tail index and extreme quantiles. This
is important because, as noted in Chu et al. (1996), ‘[b]reaks can occur at any point, and given the costs of failing to detect
them, it is desirable to detect them as rapidly as possible. One-shot tests cannot be applied in the usual way each time new
data arrive, because repeated application of such tests yields a procedure that rejects a true null hypothesis of no change
with probability one as the number of applications grows.’ This paper will fill this gap for closed-end procedures. To allow
for sufficient flexibility in the use of tail index estimators, we will use the approach of Hoga (2017+b).

Whether a monitoring procedure for a change in the tail index or an extreme quantile is of interest will largely be a
matter of context. If interest centers on VaR, which is widely used in the banking industry and by financial regulators as
a risk measure, the quantile monitoring procedure will be more relevant. If however interest centers on the mean excess
function of the (log-transformed) data X , then, since E (log X − log t|X > t) converges to the extreme value index of X as
t →∞, the tail index alternative seems to bemore appropriate. Furthermore, the tail index per se could also be of interest as
there are indications that it has predictive power for stock returns (Kelly and Jiang, 2014), where higher (lower) tail indices
of returns indicate higher (lower) absolute returns.

The outline of this paper is as follows. Themain results under the null and two alternatives are stated in Section 2, where
an example of a time series satisfying our assumptions is also given. Simulations and an empirical application are presented
in Sections 3 and 4 respectively. All proofs are collected in an Appendix.

2. Main results

2.1. Preliminaries and assumptions

To introduce the required notation let X1, . . . , Xn be a sequence of random variables defined on some probability space
(Ω,A, P) with survivor function F̄i (x) := 1 − Fi(x) = P (Xi > x), that is regularly varying with parameter −αi (written
F̄i ∈ RV−αi ), i.e.,

F̄i (x) = x−αiLi (x) , x > 0, (1)

where Li : (0,∞)→ (0,∞) is slowly varying, i.e.,

lim
x→∞

Li (λx)
Li (x)

= 1 ∀λ > 0. (2)

If Xi is Pareto distributed, then Li(x) ≡ c > 0. Since slow variation of the function Li(x) means, loosely speaking, that it
behaves like a constant function at infinity, we say that Xi with tails as in (1) has Pareto-type tails. In the context of extreme
value theory, αi is called the tail index and γi := 1/αi the extreme value index (Resnick, 2007, Sec. 4.5.1).

Define

Ui (x) := F−1i


1−

1
x


, x > 1,

as the (1− 1/x)-quantile, F−1i being the left-continuous inverse of Fi. Then, recall that (1) is equivalent to

Ui(λx)
Ui(x)

−→
(x→∞)

λγ (3)

(e.g., Resnick, 2007, Prop. 2.6 (v)). Throughout, k = kn ∈ N will denote a sequence satisfying k ≤ n− 1,

k −→
(n→∞)

∞ and
k
n
−→
(n→∞)

0, (4)

controlling the number of upper order statistics used in the estimation of the tail index and p = pn → 0, n → ∞, will
denote a sequence of small probabilities, for which we want to test for a change in an appertaining extreme (right-tail)
quantile Ui(1/p). As is customary in extreme value theory, we will usually drop the subindex n and simply write k and p. For
t − s ≥ 1/n and y ∈ [0, 1] set

Xk (s, t, y) := (⌊k (t − s) y⌋ + 1) th largest value of X⌊ns⌋+1, . . . , X⌊nt⌋.

Under the assumption of strictly stationary Xi we write F̄ = F̄i and U = Ui. Letγ (s, t) := γn (s, t) , 0 ≤ s < t <∞, t − s ≥ 1/n,
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