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a b s t r a c t

We study in detail the bias and variance of the entropy estimator proposed by Kozachenko
and Leonenko (1987) for a large class of densities on Rd. We then use the work of Bickel
and Breiman (1983) to prove a central limit theorem in dimensions 1 and 2. In higher
dimensions, we provide a development of the bias in terms of powers of N−2/d. This
allows us to use a Richardson extrapolation to build, in any dimension, a root-n consistent
entropy estimator satisfying a central limit theoremwhich allows for explicit (asymptotic)
confidence intervals. To our knowledge, all the previous general root-n consistency results
were concerning dimension 1.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and main results

1.1. The setting

Consider a probability measure F on Rd with density f . We are interested in its entropy defined by

H(f ) = −


Rd

f (x) log f (x)dx.

For N ≥ 1 and for X1, . . . , XN+1 an i.i.d. sample of F , we consider, for each i = 1, . . . ,N + 1,

RN
i = min{|Xi − Xj| : j = 1, . . . ,N + 1, j ≠ i} and YN

i = N(RN
i )d. (1)

Here | · | stands for any norm on Rd. For x ∈ Rd and r ≥ 0, we set B(x, r) = {y ∈ Rd
: |y − x| ≤ r} and we introduce

vd =

B(0,1) dx. We also denote by γ = −


∞

0 e−x log xdx ≃ 0.577 the Euler constant. We finally set

HN =
1

N + 1

N+1
i=1

log YN
i + γ + log vd. (2)

The estimator HN of H(f ) was proposed by Kozachenko and Leonenko (1987). The object of the paper is to study in detail
the bias, variance and asymptotic normality of HN .
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1.2. Heuristics

Let us explain briefly why HN should be consistent.
The conditional law of YN

i knowing Xi is approximately Exp(vdf (Xi)) for N large: for r > 0, Pr(YN
i > r | Xi) =

[1 − F(B(Xi, (r/N)1/d))]N ≃ exp(−NF(B(Xi, (r/N)1/d))) ≃ exp(−vdf (Xi)r).
Consequently, we expect that YN

i = ξi/(vdf (Xi)), for a family (ξi)i=1,...,N+1 of approximately Exp(1)-distributed random
variables, hopefully not too far from being independent.

We thus expect that (N+1)−1 N+1
i=1 log YN

i ≃ E[log(ξ1/(vdf (X1)))] = E[log ξ1]− log vd−E[log f (X1)] ≃ −γ − log vd+

H(f ) and thus that HN ≃ H(f ).

1.3. Motivation

Estimating the entropy given some observations seems to be useful in various applied sciences and engineering.
Searching for works on this topic, one finds a considerable number of applied papers that we do not try to summarize.
Let us mention various fields such as independent component analysis, image analysis, genetic analysis, speech recognition,
manifold learning, kinetic physics, molecular chemistry, computational neuroscience, etc. Beirlant et al. (1997) alsomention
applications to quantization, econometrics and spectroscopy.

The estimation of the relative entropy (or Kullback–Leibler divergence) of f with respect to some known g is deduced
from the entropy estimation, sinceH(f |g) = −H(f )−


Rd f (x) log g(x)dx and since


Rd f (x) log g(x)dx is naturally estimated

by the root-N asymptotically normal estimator N−1 N
i=1 log g(Xi), at least if


Rd f (x) log2 g(x)dx < ∞.

Concerning applications to statistics, let us mention a few goodness-of-fit tests based on the entropy estimation: see
Vasicek (1976) for normality (Gaussian laws maximize the entropy among all distributions with given variance), Dudewicz
and van derMeulen (1981) for uniformity (uniform lawsmaximize the entropy among all distributions with given support),
Mudholkar and Lin (1987) for exponentiality (exponential lawsmaximize the entropy among allR+-supported distributions
with givenmean). Also, Robinson (1991) proposed an independence test, based on the fact that f ⊗g maximizesH(h) among
all densities h with marginals f and g .

1.4. Available results

Wenow list a fewmathematical results. Let us firstmention the reviewpaper (Beirlant et al., 1997) by Beirlant, Dudewicz,
Györfi and van der Meulen.

Levit (1978) has shown that Var (log f (X1)) =


Rd f (x) log2 f (x)dx − (H(f ))2 is the smallest possible normalized (by N)
asymptotic quadratic risk for entropy estimators in the local minimax sense.

Essentially, there are two types of methods for the entropy estimation. The plug inmethod consists in using an estimator
of the form HN = −


Rd fN(x) log fN(x)dx, where fN is an estimator of f . One then needs to use something like a kernel

density estimator and this requires to have an idea of the tail behavior of f . Joe (1989) considers the case where f is bounded
below on its (compact) support, while Hall and Morton (1993) propose some root N and asymptotically normal estimators
assuming that f (x) ∼ a|x|−α (with α known) or f (x) ∼ a exp(−b|x|−α) (with α known).

The second class of methods consists in using spacings if d = 1, see Vasicek (1976), or neighbors as proposed by
Kozachenko and Leonenko (1987). In Kozachenko and Leonenko (1987), a consistency result is proved (for HN defined by
(2)), in any dimension, under rather weak conditions on f and this is generalized to other notions of entropies by Leonenko
et al. (2008) and Leonenko and Pronzato (2010). Instead of using nearest neighbor, we can use kth nearest neighbors with
either k fixed or 1 ≪ k ≪ N (similarly, in dimension 1, we can use k-spacings).

In dimension 1 and assuming that f is bounded below on its (compact) support, Hall (1984, 1986) and van Es (1992) show
some root N consistency and asymptotic normality for the entropy estimator based on k spacings (in both cases where k
is fixed or tends to infinity at some suitable rate). Tsybakov and van der Meulen (1996) are the first to prove some root
N consistency for some entropy estimator for general densities with unbounded support, in dimension 1. They consider
a modified version of (2) and assume that f is sufficiently regular, positive and has some sub-exponential tails. Still in
dimension 1, El Haje and Golubev (2009) prove some rootN consistency and asymptotic normality for the entropy estimator
based on 1-spacings. Furthermore, their assumptions on f are weaker than those of Tsybakov and van der Meulen (1996).
In particular, they allow f to have some zeros and some fat tails.

Bickel and Breiman (1983) prove a very general central limit theorem for nonlinear bounded functionals of nearest
neighbors in any dimension. Unfortunately, this does not apply to HN and anyway, they do not study the bias. The work
of Bickel and Breiman has been generalized in many directions, see Chatterjee (2008), Penrose and Yukich (2013) and Biau
and Devroye (2015), with new ideas of proofs. However, these generalizations do not help us much, either because the
moment conditions are too strong or because f is supposed to be bounded from below on its compact support. To prove
our central limit theorem, the simplest is thus to start from the results of Bickel and Breiman (1983), because they are the
closest to our framework.

Let us finally mention the paper of Pál et al. (2010): they study other notions of entropy, work in dimension d ≥ 1, use
estimators based on nearest neighbors and give some bounds on their rates of convergence.



Download	English	Version:

https://daneshyari.com/en/article/5129532

Download	Persian	Version:

https://daneshyari.com/article/5129532

Daneshyari.com

https://daneshyari.com/en/article/5129532
https://daneshyari.com/article/5129532
https://daneshyari.com/

