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a b s t r a c t

In a functional setting, we elaborate and study two test statistics to highlight the Poisson
nature of a Cox process when n copies of the process are available. Our approach involves
a comparison of the empirical mean and the empirical variance of the functional data and
can be seen as an extended version of a classical overdispersion test for count data. The
limiting distributions of our statistics are derived using a functional central limit theorem
for càdlàg martingales. Our procedures are easily implementable and do not require any
knowledge on the covariate.We address a theoretical comparison of the asymptotic power
of our tests under some local alternatives. A numerical study reveals the goodperformances
of the method. We also present two applications of our tests to real datasets.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Count process formulation is commonly used to describe and analyze many kinds of data in sciences and engineering.
A widely used class of such processes is the family of the so-called Cox processes or doubly stochastic Poisson processes.
Compared to the standard Poisson process, the key feature of a Cox process is that its arrival rate is stochastic, depending
on some covariate. In other words, if T > 0 denotes the observation period, N = (Nt)t∈[0,T ] the Cox process and
Λ = (Λ(t))t∈[0,T ] the (stochastic) cumulative arrival rate then, conditioning on Λ, the distribution of N is that of a Poisson
process with cumulative intensity Λ. Using randomness in the cumulative intensity, the statistician can take into account
some auxiliary information, thus leading to a more realistic model. For general references, we refer the reader to the books
by Cox and Isham (1980), Karr (1991), Kingman (1993) or Snyder and Miller (1991).

In actuarial sciences and risk theory for instance, the number of claims in the risk model may be represented by a Cox
process. In this area, the central quantity is the ruin probability, i.e. the probability that the surplus of the insurer is negative
at some time (see e.g. Björk and Grandell, 1988; Grandell, 1991; Schmidili, 1996). Cox process also appears in biophysics
and physical chemistry (see e.g. Kou et al., 2005; Kou, 2008; Zhang and Kou, 2010). In these fields, experimental data consist
of photon arrival times with the arrival rate depending on the stochastic dynamics of the system under study (for example,
the active and inactive states of an enzyme can have different photon emission intensities). By analyzing the photon arrival
data, one aims to learn the system’s biological properties. Cox process data arise in neuroscience, to analyze the form of
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neural spike trains, defined as a chain of action potentials emitted by a single neuron over a period of time (see e.g. Gerstner
and Kistler, 2002; Reynaud-Bourret et al., 2014). Finally, let usmention astrophysics as another area where Cox process data
often occur (see e.g. Scargle, 1998; Carroll and Ostlie, 2007).

In general, it is tempting to incorporate abusively numerous covariates in the statistical model, though a Poisson process
model might be satisfactory. In this paper, we elaborate two nonparametric test statistics to highlight the Poisson nature of
a Cox process. More precisely, based on i.i.d. copies ofN , we construct two nonparametric test statistics forH0:N is a Poisson
process vs H1: N is not a Poisson process. This setting of i.i.d. copies of N is justified by the fact that in many situations, the
duration of observation is limited but the number of observed paths is large.

Among the various possibilities for constructing a test statistic devoted to this problem, a naive approach consists in first
estimating both functions t → E[Nt |Λ] and t → ENt and then testing whether these functions are equal. However, this
approach suffers from two main drawbacks: the curse of dimensionality (whenever Λ takes values in a high-dimensional
space) and the knowledge a priori onΛ. Another approach is to test whether the time-jumps ofN are Poisson time-jumps; in
this direction, we refer the reader to the paper by Reynaud-Bourret et al. (2014), in which a modified Kolmogorov–Smirnov
statistic is used.

In this paper, we elaborate and study two test statistics, both based on the observation that a Cox process is a Poisson
process if, and only if its mean and variance functions are equal. As we shall see, this approach leads to very simple and
easily implementable tests.

The paper is organized as follows. In Section 2, we first present the test statistics, then we establish their asymptotic
properties. We also compare the asymptotic properties of the tests by using a local alternative. Section 3 is devoted to a
simulation study. An application to real data is presented in Section 4. The proofs of our results are postponed to the three
last sections of the paper.

2. Tests for Cox processes

2.1. Principle of the tests

Throughout the paper, T > 0 is the (deterministic) duration of observation, and N = (Nt)t∈[0,T ] is a Cox process with
cumulative intensity process Λ = (Λ(t))t∈[0,T ], such that the fourth moment of NT is finite, i.e. EN4

T < ∞, and ENt ≠ 0 for
some t ∈]0, T [. Note that the mean function t → ENt = EΛ(t) might not be absolutely continuous, so it is not necessarily
the integral of an intensity.

We let m and σ 2 the mean and variance functions of N , i.e. for all t ∈ [0, T ]:

m(t) = ENt and σ 2(t) = var(Nt).

Recall that for all t ∈ [0, T ] (see p. 66 in the book by Kingman, 1993):

σ 2(t) = m(t) + var(E[Nt |Λ]) = m(t) + var

Λ(t)


. (2.1)

Hence, σ 2(t) ≥ m(t) that is, each Nt is overdispersed. Moreover, if m = σ 2, then E[Nt |Λ] = ENt for all t ∈ [0, T ], thus N
is a Poisson process. As a consequence, N is a Poisson process if, and only if m = σ 2. This observation is the key feature for
the construction of our test statistics. With this respect, the problem can be written as follows:

H0 : σ 2
= m vs H1 : ∃t ≤ T with σ 2(t) > m(t).

From now on, we let the data N (1), . . . ,N (n) to be independent copies of N . By above, natural test statistics are based on
the process σ̂ 2

− m̂ = (σ̂ 2(t) − m̂(t))t∈[0,T ], where m̂ and σ̂ 2 are the empirical counterparts ofm and σ 2:

m̂(t) =
1
n

n
i=1

N (i)
t and σ̂ 2(t) =

1
n − 1

n
i=1


N (i)

t − m̂(t)
2

.

In this paper, convergence in distribution of stochastic processes is intendedwith respect to the Skorokhod topology (see
Chapter VI in the book by Jacod and Shiryaev, 2003).

Our first main result gives the asymptotic distribution of the process σ̂ 2
− m̂ under H0 (see Section 5 for the proof).

Theorem 2.1. Let B = (Bt)t∈R+
be a standard Brownian Motion on the real line. Under H0, σ̂

2
− m̂ is a martingale and

√
n


σ̂ 2

− m̂
 (law)

−→

B2m(t)2


t≤T . �

As far as we know, the martingale property for σ̂ 2
− m̂ has not been observed yet. This property, which is interesting by

itself, plays a crucial role in the derivation of the asymptotic result.
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