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a b s t r a c t

In this paper, we present inferential procedures to compare the means of two samples of
functional data. The proposed tests are based on a suitable generalization of Mahalanobis
distance to the Hilbert space of square integrable functions defined on a compact interval.
The only conditions required concern themoments and the independence of the functional
data, while the distribution of the processes generating the data is not needed to be
specified. Test procedures are proposed for both the cases of known and unknown
variance–covariance structures, and asymptotic properties of test statistics are deeply
studied. A simulation study and a real case data analysis are also presented.
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1. Introduction

In the last two decades, the statistical research has been motivated by an increasing interest in the study of high
dimensional data, having a wide range of applications in biology, chemometrics, medicine, meteorology and finance, among
others. In all these cases observed data may be points that belong to functions generated by a continuous time stochastic
process with values in a suitable infinite dimensional Hilbert space, typically L2(T ), with T compact interval of R. Functional
Data Analysis (FDA) gathers all the statistical models and tools required for the study of this kind of data characterized by
a number p of features observed for each statistical unit much larger than the sample size n (see Ramsey and Silverman,
2002, 2005; Ferraty and Vieu, 2006; Horváth and Kokoszka, 2012 and references therein). Classical methodologies in FDA
are concerned with the mean function and the covariance kernel of the process generating the data. The estimation and the
inference on the mean function is typically realized by computing confidence bands that take into account the covariance
structure of the process, see for instance see Yao et al. (2005) and Ma et al. (2012) for sparse longitudinal data, Bunea et al.
(2011), Degras (2011) and Cao et al. (2012) for dense functional data.

The problem of testing the difference between means in functional framework has been faced in different areas of the
statistical research. In particular (Ramsey and Silverman, 2005) proposed a pointwise t-test, Zhang et al. (2010) introduced
a test based on L2 norm for the Behrens–Fisher problem, Pini and Vantini (2016) proposed an interval testing procedure
based on permutation tests, Staicu et al. (2014) developed a pseudo likelihood ratio test and Staicu et al. (2015) studied
a L2-norm based global testing procedure for multilevel structured functional data. In a nonparametric setting (Hall and
Keilegom, 2007) studied the best smoothing techniques tominimize the amount of difference in the distributions generating
data, due to the reconstruction from discrete sampled observations. The two-sample comparison can be viewed also as a
particular case of functional analysis of variance (FANOVA) with only two groups of sampled curves (see among others
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Cuevas et al., 2004; Abramovich and Angelini, 2006; Antoniadis and Sapatinas, 2007; Zhang, 2013 and Horváth and Rice,
2015). In (Horváth et al., 2013) this problem is addressed studying the sample covariance operator for functional time
series, whereas in a classification context (Galeano et al., 2015) studied a truncated version of the Mahalanobis distance
for functional data that they proved to be a semi-distance in L2. In many cases, these procedures consist of a suitable
dimensional reduction of the data, which allows classical multivariate procedures to be applied. Although this approach
may be satisfactory in some situations, the functional nature of the data is not fully exploited and some information may
be lost due to the dimensional reduction. Our aim is to construct a testing procedure based on a distance in L2 that either
considers all the components of data, without truncation, and takes into account the structure of the variance–covariance
operator.

In Ghiglietti and Paganoni (2014), the authors proposed a procedure to test the difference between themeans of Gaussian
processes based on a generalization of Mahalanobis distance (say dp) that achieves two main goals: (i) to consider all the
infinite components of data basis expansion and (ii) to share the same ideas which the Mahalanobis distance is based on. In
this paper, we extend those inferential procedures to a wide range of situations, by relaxing some strong assumptions made
in Ghiglietti and Paganoni (2014). Specifically, the proposed tests do not require to specify the distribution of the processes
generating the data and allow comparisons between samples with different covariance functions. In particular, in this work
we relax the strong assumption on the Gaussianity of the processes generating data required in Ghiglietti and Paganoni
(2014). In this wider context, we prove theoretical results on the convergence of the distance dp between the sample mean
and a fixed function m(t) ∈ L2(T ) and between means of two independent samples. Additionally, we establish the rate
of convergence and the exact asymptotic distributions of the distance dp between functional sample means. The rate of
convergence and the limiting distributions are sharply different when the truemeans of the processes are equal or different.
Indeed, in the first case, we show that the exact rate of convergence is n−1 and the limiting distribution is a strictly positive
random variable; in the second case, we prove a central limit theorem (CLT) for the distance dp between functional sample
means with Gaussian asymptotic distribution and the rate of convergence of n−

1
2 .

The almost sure convergence established for the distance dp of the sample means guarantees the consistency of this
estimator, while the second-order asymptotic results provide the probabilistic basis to construct test procedures for the
comparison of the means of two functional populations. Indeed, the proposed critical regions are based on the limiting
distribution established in the case of equality of themeans, while the CLT is applied to compute the asymptotic power of the
test given any difference between themeans of the processes. Test procedures are proposed for both the cases of known and
unknownvariance–covariance structures. It isworth noting that all the results hold also formultivariate functional data case.

Moreover, the functional framework adopted in the paper includes as a special case the multivariate finite dimensional
setting. In particular, since in this latter case the standard Mahalanobis distance is well defined and it can be derived by a
particular choice of dp, the asymptotic results and the inferential procedures of this paper can be applied to the multivariate
data analysis based on the Mahalanobis distance.

The rest of the paper is structured as follows: firstly, the distance dp is introduced and its main properties are discussed
in Section 2. Then, the asymptotic results on the behavior of this metric applied to random processes are presented in
Section 3. Section 4 is concerned with inferential procedures for the comparison of the means in functional data analysis.
Specifically, critical regions based on the distance dp applied to functional sample means are proposed. Finally, a simulation
study togetherwith a real case data analysis are presented in Section 5. Appendices A and B gather the proofs of the theorems
stated in Section 3. All the analyzes are carried out with R (R Development Core Team, 2009).

2. Properties of a generalized Mahalanobis distance for functional objects

In this section, we present the generalized Mahalanobis distance for infinite dimensional spaces introduced in Ghiglietti
and Paganoni (2014). This metric is characterized by features similar to the Mahalanobis distance, which is commonly used
in the multivariate context. Hence, inferential tools for infinite dimensional objects can be constructed in an analogous way
to the procedures typically used for multivariate elements (see Section 4). We start by describing the motivation problem
that required the introduction of the new distance.

Let y and w be realizations of a stochastic process X ∈ L2(T ), where T is a compact interval of R. Let m(t) = E[X(t)]
be the mean function and V the covariance operator of X , i.e. V is a linear compact integral operator from L2(T ) to
L2(T ) acting as follows: (Va)(s) =


T v(s, t)a(t)dt ∀a ∈ L2(T ), where v is the covariance function defined as v(s, t) =

E[(X(t)−m(t))(X(s)−m(s))]. Then, denote by {λk; k ≥ 1} and {ϕk; k ≥ 1} the sequences of eigenvalues and eigenfunctions,
respectively, associated to v.

Letting ⟨a, b⟩ =

T a(t)b(t)dt be the usual inner product in L2(T ), the natural generalization of the Mahalanobis distance

in the functional framework would be the following

dM(y, w) =

 ∞
k=1

(⟨y − w, ϕk⟩)
2

λk
. (1)

This distance takes into account the correlations and the variability described by the covariance structure of X . However, it
is well known that in an infinite dimensional space dM is not a proper distance in L2(T ), since the series in (1) can diverge
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