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a b s t r a c t

The main theme of this paper is a modification of the likelihood ratio test (LRT) for testing
high dimensional covariance matrix. Recently, the correct asymptotic distribution of the
LRT for a large-dimensional case (the case p/n approaches to a constant γ ∈ (0, 1]) is
specified by researchers. The correct procedure is named as corrected LRT. Despite of its
correction, the corrected LRT is a function of sample eigenvalues that are suffered from
redundant variability from high dimensionality and, subsequently, still does not have full
power in differentiating hypotheses on the covariance matrix. In this paper, motivated
by the successes of a linearly shrunken covariance matrix estimator (simply shrinkage
estimator) in various applications, we propose a regularized LRT that uses, in defining
the LRT, the shrinkage estimator instead of the sample covariance matrix. We compute
the asymptotic distribution of the regularized LRT, when the true covariance matrix is
the identity matrix and a spiked covariance matrix. The obtained asymptotic results have
applications in testing various hypotheses on the covariance matrix. Here, we apply them
to testing the identity of the true covariance matrix, which is a long standing problem in
the literature, and show that the regularized LRT outperforms the corrected LRT, which is
its non-regularized counterpart. In addition, we compare the power of the regularized LRT
to those of recent non-likelihood based procedures.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

High dimensional data are now prevalent everywhere that include genomic data in biology, financial times series data
in economics, and natural language processing data in machine learning and marketing. The traditional procedures that
assume that sample size n is large and dimension p is fixed are not valid anymore for the analysis of high dimensional data.
A significant amount of research are made to resolve the difficulty from the dimensionality of the data.

This paper considers the inference problem of large scale covariance matrix whose dimension p is large compared to
the sample size n. To be specific, we are interested in testing whether the covariance matrix equals to a given matrix;
H0 : Σ = Σ0, where Σ0 can be set Ip without loss of generality. The likelihood ratio test (LRT) statistic for testing H0 :

Σ = Ip is defined by

LRT = tr

Sn)− log |Sn| − p =

p
i=1


li − log li − 1


,
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where Sn is the unbiased and centered sample covariancematrix and li is the ith largest eigenvalue of the sample covariance
matrix.When p is fixed, LRT follows the chi-square distributionwith degrees of freedom p(p+1)/2 asymptotically. However,
this does not hold when p increases. Its correct asymptotic distribution is computed by Bai et al. (2009) for the case p/n
approaches γ ∈ (0, 1) and both n and p increase. They further numerically show that their asymptotic normal distribution
defines a valid procedure for testing H0 : Σ = Ip. The results of Bai et al. (2009) are refined by Jiang et al. (2012), which
include the asymptotic null distribution for the case γ = 1. Despite of the correction of the null distribution, the sample
covariance is known to have redundant variability when p is large, and it still remains a general question that the LRT is
asymptotically optimal for testing problem in the n, p large scheme.

In this paper, it is shown that the corrected LRT can be further improved by introducing a linear shrinkage component.
In detail, we consider a modification of the LRT, denoted by regularized LRT (rLRT), defined by

rLRT = tr
Σ− log |Σ | − p =

p
i=1


ψi − logψi − 1


, (1)

where Σ is a regularized covariance matrix and ψi is the ith largest eigenvalue of Σ . Here, we consider the regularization
via linear shrinkage:Σ ≡ λSn + (1 − λ)Ip. (2)

We also occasionally notate rLRT(λ) to emphasize the use of the value λ. The linearly shrunken sample covariance matrix
(simply shrinkage estimator) is known to reduce expected estimation loss of the sample covariance matrix (Ledoit and
Wolf, 2004). It is also successfully applied to many high-dimensional procedures to resolve the dimensionality problem. For
example, Schäfer and Strimmer (2005) reconstruct a gene regulatory network from microarray gene expression data using
the inverse of a regularized covariance matrix. Chen et al. (2011) propose a modified Hotelling’s T 2-statistic for testing high
dimensional mean vectors and apply it to finding differentially expressed gene sets. We are motivated by the success of
above examples and inspect whether the power can be improved by the reduced variability via linear shrinkage. To the best
of our knowledge, our work is the first time to apply the linear shrinkage to the covariance matrix testing problem itself.

We derive the asymptotic distribution of the proposed rLRT(λ) under two scenarios, (i) when Σ = Ip for the null
distribution, and additionally (ii) whenΣ = Σspike for power study. HereΣspike means a covariance matrix from the spiked
population model (Johnstone, 2001), roughly it is defined as a covariance matrix whose eigenvalues are all 1’s but some
finite nonunit ‘spike’. The spiked covariance matrix assumed here includes the well known compound symmetry matrix
Σcs(ρ) = Ip + ρJp, where Jp is the p × p matrix of ones. The main results show that rLRT(λ) has normal distribution
in asymptotic under both (i) and (ii); their asymptotic means are different but the variances are same. The main results
are useful in testing various one sample covariance matrices. To be specific, first, in testing H0 : Σ = Ip, (i) provides the
asymptotic null distribution of rLRT(λ). Second, combining (i) and (ii) provides the asymptotic power for an arbitrary spiked
alternative covariance matrix including Σcs(ρ). Finally, the results with λ = 1 provide various asymptotic distributions of
the corrected LRT. Among these many applications, in this paper, we particularly focus on the LRT for testing H0 : Σ = Ip,
which has long been studied bymany researchers (Anderson, 2003; Ledoit andWolf, 2002; Bai et al., 2009; Chen et al., 2010;
Jiang et al., 2012).

The paper is organized as follows. In Section 2, we briefly review results of the random matrix theory that are essential
to the asymptotic theory of the proposed rLRT. The results include the limit of empirical spectral distribution (ESD) of the
sample covariance matrix and the central limit theorem (CLT) for linear spectral statistics (LSS). In Section 3, we formally
define the rLRT, and prove the asymptotic normality of the rLRTwhen the true covariancematrixΣ is Ip orΣspike. In Section 4,
the results developed in Section 3 are applied to testing H0 : Σ = Ip. Numerical study is provided to compare the powers
of the LRT and other existing methods including the corrected LRT and other non-LRT tests by Ledoit and Wolf (2002) and
Chen et al. (2010). In Section 5, we conclude the paper with discussions of several technical details of the rLRT, for example,
close spiked eigenvalues.

2. Randommatrix theory

In this section, some useful properties of linear spectral statistics of the sample covariance matrix are introduced. The
true covariance matrixΣ is identity or that from a spiked population model.

The following notation is used throughout the paper. Let M be a real-valued symmetric matrix of size p × p and αj(M)
be the jth largest eigenvalue of the matrix M with natural labeling αp(M) ≤ · · · ≤ α1(M). The spectral distribution (SD) for
M is defined by

FM(t) :=
1
p

p
j=1

δαj(M)(t), t ∈ R,

where δα(t) is a point mass function that can be also written, with notational abuse, as δα(t) = I(α ≤ t). Here, I(A) denotes
the indicator function of a set A.
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