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a b s t r a c t

A class of binary response models is considered for describing the data on a response
variable having two possible outcomes and q explanatory variables when the odds ratios
on the response are a linear function of the explanatory variables. The models provide the
closed form solutions of the maximum likelihood estimating equations for the parameter
estimation under a Bernoulli setup. A data example is presented to demonstrate the
better goodness of fit of a model within this class in comparison with the logit, probit,
and complimentary log–log models. The design conditions are given and locally optimal
designs are presented for some special cases under the D-, A -, and E -, optimality criterion
functions. Two designs, one efficient for identifying one model and other efficient for
identifying another model, are then compared for their discrimination abilities between
two models even before the data collection.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The study of dependence between response and explanatory variables is a major area of investigation in statistics with
its complexities and challenges. Controlled experiments are performed to collect data on the variables and the models are
assumed for the analysis of the data. Developing efficientmethods of data collection and analysis are fundamental statistical
endeavors. An important situation ariseswhen the response variable is binary in having twopossible outcomes. For example,
the responses may be alive or dead in an experiment exploring the toxicity of a pesticide (Shi and Renton, 2013), accept or
reject a bid in a contingent valuation experiment (Lim et al., 2014), or correct or wrong answer in an achievement test (Finch
and Cassady, 2014). Here ‘‘success’’ and ‘‘failure’’ are used as generic representations for the two categories. In this paper
a particular class of models is considered where the odds of the binary response variable are linearly dependent on the
explanatory variables. This class is related tomany practically useful and important models. The exact solution of maximum
likelihood estimation of the parameters for a Bernoullimodel is presented. Design issues are investigated and locally optimal
designs are presented in some special cases. Model discrimination issues are also discussed with an illustrative example.
Ghosh and Dutta (2013) worked out the issues for some continuous response models but in here the issues are addressed
for the binary response models.

Consider a binary response variable Y with two realized values 1 (success) and 0 (failure). One of the most used models
for studying the dependence of Y on q explanatory variables X1, . . . , Xq, is the logit model (McCullagh and Nelder, 1989;
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Fackle-Fornius and Nyquist, 2009; Ghosh and Banerjee, 2010). The log-odds for the logit model is a linear combination of
the explanatory variables

loge


π(x)

1 − π(x)


= α + β′x

where x = (x1, . . . , xq)′, andβ = (β1, . . . , βq)
′. However, as is noted by e.g. Thomas (1981),many plausiblemodelsmay not

be adequately represented by a logit function. An alternative model, used by Thomas (1981) for analyzing the dependence
of lung cancer incidence on exposure of asbestos, utilizes the odds being a linear function of the explanatory variables

π(x)
1 − π(x)

= α + β′x, (1)

see also Holford (2002, Ch. 6) and VanderWeele and Vansteelandt (2011). Models in this class become

P(Y = 1 | X1 = x1, . . . , Xq = xq) = π(x) =
α + β′x

1 + α + β′x
, (2)

where (α, β′) ≠ (0, 0′) and (α+β′x) ≥ 0. Clearly,π(x) ≤ 1 and the ‘‘=’’ holds approximately for all practical considerations
when (α+β′x) becomes very large. Moreover, π(x) > 0when (α+β′x) > 0, π(x) =

1
2 when (α+β′x) = 1, and π(x) = 0

when (α + β′x) = 0. The conditional expectation of Y given (X1 = x1, . . . , Xq = xq) is E(Y | X1 = x1, . . . , Xq = xq) = π(x).
In the language of the generalized linearmodels (GLM),McCullagh andNelder (1989), the linear predictor θ and link function
g are

θ(x) = α + β′x, π(x) =
θ(x)

1 + θ(x)
, g(π(x)) = θ(x) =

π(x)
1 − π(x)

. (3)

Fig. 1 displays the dependence of π(x) on θ(x). The first graph in Fig. 1 portrays the plot of π(x) for 0 ≤ θ(x) ≤ 5 and the
second graph for 0 ≤ θ(x) ≤ 1000.

The data on Y , X1, . . . , and Xq collected from an experiment are represented by (yij, xi1, . . . , xiq), j = 1, . . . , ni, i =

1, . . . , k. At the ith design point x(i)′
= (xi1, . . . , xiq), the replicated observations are yij, j = 1, . . . , ni. Denote xs =

(x1s, . . . , xks)′, s = 1, . . . , q, and the (k × q) matrix D = (x(1), . . . , x(k))′ = (x1, . . . , xq) representing the design whose
k rows are the design points. Given the data, the ML estimation of the parameters α, β1, . . . , βq is considered first. The
admissibility of estimated parameters in satisfying the conditions θi > 0, i = 1, . . . , k is then discussed. At the design
stage, the locally optimum designs are presented in the framework of Robbins–Monro–Chernoff (Robbins andMonro, 1951;
Chernoff, 1953) by determining the optimum values of θ1, . . . , and θk in some special cases. Determining the optimum
values of θ1, . . . , and θk is used by many authors for logit, probit, and complementary log–log models (see, Atkinson et al.,
2007, Section 22.4, pp. 398–410) including a few references to the original work (Abdelbasit and Plackett, 1983; Ford et al.,
1992; Khan and Yazdi, 1988; Mathew and Sinha, 2001; Minkin, 1987; Sitter and Wu, 1993). For the logit model, which is
different from the model in (1), the celebrated D-optimal equally replicated symmetric design for k = 2 and q = 1 is given
by θ1 = −1.5434 and θ2 = 1.5434 (Abdelbasit and Plackett, 1983; Minkin, 1987; Atkinson et al., 2007). Again, the negative
value of θ1 in here is not in violation of the condition θi > 0 for the model in (1).

The first goal in this paper is to fit the model in (1) to data collected from an experiment. The second goal is to determine
the optimal choice of the design D for a given value of (n1, . . . , nk). The third goal is to determine the optimal choice of
(n1, . . . , nk) for a given design D. The fourth goal is to determine the optimal choices of D and (n1, . . . , nk). The fifth goal is
to consider the model discrimination situation where several possible models are chosen for fitting to the data.

The model (1) is a special case of a general class of models

π(θ) = 1 − (c + (t − 1)θ)1/(1−t), t ≠ 1, (4)

when c = 1 + α and t = 2. The models in (4) are characterized by the assumption that the rate of increase in π(x) with
respect to θ is proportional to the tth power of (1 − π(x)) or equivalently

d
dθ

π(θ) = c(γ2 − π(θ))t , (5)

for a proportionality constant c (>1) and γ2 = 2. This is to say that the larger the probability for observing a success, the
smaller is the derivative of π(θ). This differential equation is a special case of the Bernoulli equation (Zwillinger, 1997) and
can easily be solved.

When t = 1, Eq. (5) gives

π(x) = 1 − eα−β′x,

where π(x) resembles the distribution function of an exponential distribution and the constant α is interpreted as the log
of the probability for no response when x = 0, i.e. α = ln(1 − π(0)). This is the so called log binomial model and has
been extensively used in epidemiology for estimating risks (Skov et al., 1998; McNutt et al., 2003). It can also be noted that
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