On the expected diameter of planar Brownian motion

James McRedmond ${ }^{\mathrm{a}, *}$, Chang Xu ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Durham University, South Road, Durham DH1 3LE, UK
${ }^{\mathrm{b}}$ Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, UK

ARTICLE INFO

Article history:
Received 4 July 2017
Accepted 6 July 2017
Available online 14 July 2017

MSC 2010:

60J65
60D05
Keywords:
Brownian motion
Convex hull
Diameter

Abstract

Known results show that the diameter d_{1} of the trace of planar Brownian motion run for unit time satisfies $1.595 \leq \mathbb{E} d_{1} \leq 2.507$. This note improves these bounds to $1.601 \leq$ $\mathbb{E} d_{1} \leq 2.355$. Simulations suggest that $\mathbb{E} d_{1} \approx 1.99$.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let $\left(b_{t}, t \in[0,1]\right)$ be standard planar Brownian motion, and consider the set $b[0,1]=\left\{b_{t}: t \in[0,1]\right\}$. The Brownian convex hull $\mathcal{H}_{1}:=$ hull $b[0,1]$ has been well-studied from Lévy (1948, §52.6, pp. 254-256) onwards; the expectations of the perimeter length ℓ_{1} and area a_{1} of \mathcal{H}_{1} are given by the exact formulae $\mathbb{E} \ell_{1}=\sqrt{8 \pi}$ (due to Letac, 1978; Takács, 1980) and $\mathbb{E} a_{1}=\pi / 2$ (due to El Bachir, 1983).

Another characteristic is the diameter

$$
d_{1}:=\operatorname{diam} \mathcal{H}_{1}=\operatorname{diam} b[0,1]=\sup _{x, y \in b[0,1]}\|x-y\|,
$$

for which, in contrast, no explicit formula is known. The exact formulae for $\mathbb{E} \ell_{1}$ and $\mathbb{E} a_{1}$ rest on geometric integral formulae of Cauchy; since no such formula is available for d_{1}, it may not be possible to obtain an explicit formula for $\mathbb{E} d_{1}$. However, one may get bounds.

By convexity, we have the almost-sure inequalities $2 \leq \ell_{1} / d_{1} \leq \pi$, the extrema being the line segment and shapes of constant width (such as the disc). In other words,

$$
\frac{\ell_{1}}{\pi} \leq d_{1} \leq \frac{\ell_{1}}{2}
$$

The formula of Letac (1978) and Takács (1980) says that $\mathbb{E} \ell_{1}=\sqrt{8 \pi}$, so we get:
Proposition 1. $\sqrt{8 / \pi} \leq \mathbb{E} d_{1} \leq \sqrt{2 \pi}$.
Note that $\sqrt{8 / \pi} \approx 1.5958$ and $\sqrt{2 \pi} \approx 2.5066$. In this note we improve both of these bounds.

[^0]
2. Lower bound

For the lower bound, we note that $b[0,1]$ is compact and thus, as a corollary of Lemma 6 , we have the formula

$$
\begin{equation*}
d_{1}=\sup _{0 \leq \theta \leq \pi} r(\theta) \tag{1}
\end{equation*}
$$

where r is the parametrized range function given by

$$
r(\theta)=\sup _{0 \leq s \leq 1}\left(b_{s} \cdot \mathbf{e}_{\theta}\right)-\inf _{0 \leq s \leq 1}\left(b_{s} \cdot \mathbf{e}_{\theta}\right),
$$

with \mathbf{e}_{θ} being the unit vector $(\cos \theta, \sin \theta)$. Feller (1951) established that

$$
\begin{equation*}
\mathbb{E} r(\theta)=\sqrt{8 / \pi} \quad \text { and } \quad \mathbb{E}\left(r(\theta)^{2}\right)=4 \log 2 \tag{2}
\end{equation*}
$$

and the density of $r(\theta)$ is given explicitly as

$$
\begin{equation*}
f(r)=\frac{8}{\sqrt{2 \pi}} \sum_{k=1}^{\infty}(-1)^{k-1} k^{2} \exp \left\{-k^{2} r^{2} / 2\right\},(r \geq 0) \tag{3}
\end{equation*}
$$

Combining (1) with (2) gives immediately $\mathbb{E} d_{1} \geq \mathbb{E} r(0)=\sqrt{8 / \pi}$, which is just the lower bound in Proposition 1 . For a better result, a consequence of (1) is that $d_{1} \geq \max \{r(0), r(\pi / 2)\}$. Observing that $r(0)$ and $r(\pi / 2)$ are independent, we get:

Lemma 2. $\mathbb{E} d_{1} \geq \mathbb{E} \max \left\{X_{1}, X_{2}\right\}$, where X_{1} and X_{2} are independent copies of $X:=r(0)$.
It seems hard to explicitly compute $\mathbb{E} \max \left\{X_{1}, X_{2}\right\}$ in Lemma 2, because although the density given at (3) is known explicitly, it is not very tractable. Instead we obtain a lower bound. Since

$$
\max \{x, y\}=\frac{1}{2}(x+y+|x-y|)
$$

we get

$$
\begin{equation*}
\mathbb{E} \max \left\{X_{1}, X_{2}\right\}=\mathbb{E} X+\frac{1}{2} \mathbb{E}\left|X_{1}-X_{2}\right| \tag{4}
\end{equation*}
$$

Thus with Lemma 2, the lower bound in Proposition 1 is improved given any non-trivial lower bound for $\mathbb{E}\left|X_{1}-X_{2}\right|$. Using the fact that for any $c \in \mathbb{R}$, if m is a median of $X, \mathbb{E}|X-c| \geq \mathbb{E}|X-m|$, we see that

$$
\mathbb{E}\left|X_{1}-X_{2}\right| \geq \mathbb{E}|X-m|
$$

Again, the intractability of the density at (3) makes it hard to exploit this. Instead, we provide the following as a crude lower bound on $\mathbb{E}\left|X_{1}-X_{2}\right|$.

Lemma 3. For any $a, h>0$,

$$
\mathbb{E}\left|X_{1}-X_{2}\right| \geq 2 h \mathbb{P}(X \leq a) \mathbb{P}(X \geq a+h)
$$

Proof. We have

$$
\begin{aligned}
\mathbb{E}\left|X_{1}-X_{2}\right| & \geq \mathbb{E}\left[\left|X_{1}-X_{2}\right| \mathbf{1}\left\{X_{1} \leq a, X_{2} \geq a+h\right\}\right]+\mathbb{E}\left[\left|X_{1}-X_{2}\right| \mathbf{1}\left\{X_{2} \leq a, X_{1} \geq a+h\right\}\right] \\
& \geq h \mathbb{P}\left(X_{1} \leq a\right) \mathbb{P}\left(X_{2} \geq a+h\right)+h \mathbb{P}\left(X_{2} \leq a\right) \mathbb{P}\left(X_{1} \geq a+h\right) \\
& =2 h \mathbb{P}(X \leq a) \mathbb{P}(X \geq a+h)
\end{aligned}
$$

which proves the statement.
This lower bound yields the following result.
Proposition 4. For $a, h>0$ define

$$
g(a, h):=h\left(\frac{4}{\pi} \exp \left\{-\frac{\pi^{2}}{2 a^{2}}\right\}-\frac{4}{3 \pi} \exp \left\{-\frac{9 \pi^{2}}{2 a^{2}}\right\}\right)\left(1-\frac{4}{\pi} \exp \left\{-\frac{\pi^{2}}{8(a+h)^{2}}\right\}\right)
$$

Then $\mathbb{E} d_{1} \geq \sqrt{8 / \pi}+g(1.492,0.337) \approx 1.6014$.
Proof. Consider

$$
Z:=\sup _{0 \leq s \leq 1}\left|b_{s} \cdot \mathbf{e}_{0}\right| .
$$

https://daneshyari.com/en/article/5129636

Download Persian Version:

https://daneshyari.com/article/5129636

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: j.f.w.mcredmond@durham.ac.uk (J. McRedmond), c.xu@strath.ac.uk (C. Xu).

