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a b s t r a c t

In FPCA methods, it is common to assume that the eigenvalues are distinct in order to
facilitate theoretical proofs. We relax this assumption, provide a stochastic expansion for
the estimated functional principal component projections, and establish their asymptotic
normality.
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1. Introduction

Functional data analysis (FDA) is an increasingly popular realm of statistics that is receivingmuch attention and research.
With a multitude of data applications as diverse as finance, genomics, and medicine, it is clear why FDA has drawn so much
attention from the statistics and, more broadly, the scientific community. One of the most challenging features of functional
data methods is the assumption of infinite-dimensional data or parameters, which generally forces practitioners of FDA to
employ some method of dimension reduction so that multivariate data tools can be applied. One of the most important
dimension reduction techniques is functional principal component analysis (FPCA).

In FPCA, the data are represented in terms of the eigenfunctions of the covariance operator, the functional principal
components (FPCs). When estimating these FPCs, it is typically assumed that the associated eigenvalues are distinct.
However, recent work Reimherr (2015) has shown that in the context of functional regression, by estimating the entire
projection of FPCs, rather than estimating eigenfunctions one at a time, one only needs distinctness of the last eigenvalue
included and the first eigenvalue excluded from the projection.

Readers unfamiliar with FDA are recommended to read the definitive works of Ramsay and Silverman (2005) and Bosq
(1991), thoughmany other useful overviews of the field exist (Bosq, 2000; Kokoszka and Reimherr, 2017; Hsing and Eubank,
2015; Cuevas, 2014; Goia and Vieu, 2016). For literature more specific to FPCA, we refer readers first to the accessible
surveys provided by Shang (2014) and Tran (2008), while the early mathematical framework for the asymptotics of FPCA
was established by Dauxois et al. (1982). Another major contribution was (Hall and Hosseini-Nasab, 2006), which provided
explicit stochastic expansions of estimated eigenvalues and eigenfunctions, but relied on the distinctness of the eigenvalues.
Other relevant works which expand the theory for or use of FPCA include (Kokoszka and Reimherr, 2013; Hörmann and
Kidziński, 2015a; Jirak, 2016; Hall et al., 2006; Mas and Ruymgaart, 2015). However, each of these works relies on the
assumption of distinct eigenvalues.
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Particularly relevant to our work is that of Hörmann and Kidziński (2015b) and Reimherr (2015), each of which relaxes
the assumption of distinct eigenvalues in working with FPCA. In Hörmann and Kidziński (2015b) it is shown that when
using functional regression for prediction, one does not need distinct eigenvalues to guarantee consistency of the prediction.
However, in order to establish consistent estimation, they still lean on this assumption. This is taken one step further
in Reimherr (2015), which shows that by estimating the entire principal component projection simultaneously rather than
each eigenvalue/function one at a time, what is necessary to establish consistent estimators in FPCA-based regression is
the spread between the last eigenvalue included and the first eigenvalue excluded, rather than the distinctness of all the
eigenvalues. Operating from a similar perspective, we establish a stochastic expansion of the FPC projections, which in turn
can be used to prove several forms of asymptotic normality of the projections.

2. Background

Let Xi for i = 1, . . . ,N be a sequence of N identically distributed, square integrable random functions in a real separable
Hilbert spaceH. We define ⟨·, ·⟩ to be the inner product and ⟨·, ·⟩ = ∥ · ∥

2 to be the norm onH. The covariance operator of Xi
is defined as C(·) = [⟨Xi − EXi, ·⟩(Xi − EXi)] ∈ S , where S represents the space of Hilbert–Schmidt operators. As a Hilbert–
Schmidt operator, for any orthonormal basis {ej, j ≥ 1} ofH, the covariance operator C satisfies ∥C∥

2
S =

∑
∞

j=1∥C(ej)∥
2 < ∞.

Here, ∥ · ∥
2
S represents the Hilbert–Schmidt norm, and is invariant with respect to the choice of basis. We define Ĉ to be the

sample covariance operator, which is also a Hilbert–Schmidt operator.
We now introduce some terminology and notation used in FPCA. Let {vj, j ≥ 1} be the eigenfunctions of C , which form an

orthonormal basis in H, and {λj, j ≥ 1} the corresponding eigenvalues, which are both nonincreasing and nonnegative. By
the Spectral Theorem, we can express C(x) =

∑
∞

j=1λj⟨x, vj⟩vj. Similarly, {v̂j, j ≥ 1} and {λ̂j, j ≥ 1} are the eigenfunctions and
eigenvalues of Ĉ . These eigenfunctions form the basis by which we expand our random function Xi; we project Xi onto the
subspace spanned by {vj, j ≤ J} for some (small) finite number of eigenfunctions, J . This is done using the Karhunen–Loéve
expansion as follows:

Xi − EXi =

∞∑
j=1

ξjvj,

where the ξj = ⟨Xi − EXi, vj⟩ are called the scores. FPCA is often used in FDA, in regression for instance, where the scores are
used to estimate the functional regression parameters.

Define the principal component projection to be PJ =
∑J

j=1vj ⊗ vj, and its estimate to be P̂J =
∑J

j=1v̂j ⊗ v̂j. Note that
x ⊗ y represents the tensor product between the functions x and y,which we view as an operator (x ⊗ y)(h) := ⟨y, h⟩x. Thus
the principal component projection can be applied to an object x to get PJ (x) =

∑J
j=1⟨vj, x⟩vj. These projections will be a

focal point of our proofs as their use allows for the simultaneous estimation of all the eigenfunctions, vj. Since estimating
each eigenfunction individually requires uniqueness among the eigenvalues, switching to the estimation of projections is
the critical step that allows us to weaken this assumption, requiring only that the Jth and (J + 1)th eigenvalues be unique.

3. Theoretical results

To establish our results, we assume the sample covariance operator, Ĉ , satisfies the following.

Assumption 3.1. Let ZN =
√
N(Ĉ − C) and assume that ∥ZN∥ = Op(1).

Assumption 3.2. Assume there is a mean zero Gaussian Hilbert–Schmidt operator, Z , such that ZN
d

→ Z as N → ∞.

Assumptions 3.1 and 3.2 offer different degrees of control of Ĉ . The former, which ensures that ∥Ĉ − C∥ is of order
N−1/2, is all that is required for our stochastic expansion. Meanwhile, Assumption 3.2 is a slightly stronger version of 3.1,
guaranteeing asymptotic normality of ZN which will be necessary for the asymptotic results we provide in our corollaries.
Such assumptions are often satisfied in practice; for example, given independent and identically distributed (i.i.d.) data, or
given a weakly dependent sequence—where weakly dependent can be defined, for example, via the concept of L4 − m-
approximability as in Kokoszka and Reimherr (2013)—we can guarantee the asymptotic normality of Ĉ . Central limit
theorems in Hilbert spaces have also been established under a variety of other conditions (Merlevéde, 2003;Merlevéde et al.,
1997; Tone, 2011; Chen and White, 1998; Lavrentyev and Nazarov, 2016). With these assumptions in mind, we proceed to
the main result.

Theorem 3.1. Let Assumption 3.1 hold and define the quantity

RJ,N =

J∑
j=1

∑
i>J

⟨ZN , vj ⊗ vi⟩

(λj − λi)
(vj ⊗ vi + vi ⊗ vj).
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