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a b s t r a c t

We propose a consistent and asymptotically normal parametric estimator for autoregres-
sive heteroscedastic models with errors in variables based on contrast minimization and
give an example for a discrete time observed CIR process with additive noises.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This paper is motivated by the parametric estimation of hidden stochastic models of the form:{
Yi = Xi + εi
Xi+1 = bθ0 (Xi) + σθ0 (Xi)ηi+1,

(1)

where one observes Y1, . . . , Yn, and where the random variables εi, ηi and Xi are unobserved. Notably (Xi)i≥0 is a strictly
stationary, ergodic process that depends on two measurable functions bθ0 and σθ0 and its stationary density is fθ0 , where θ0
belongs toΘ ⊂ Rp. The functions bθ0 , σθ0 and fθ0 are known up to a finite dimensional parameter, θ0. Finally, the innovations
(ηi)i≥0 and the errors (εi)i≥0 are independent and identically distributed (i.i.d.) random variables, the distribution of the
noises (εi)i≥0 being known for identifiability of the model.

In this work, we propose to estimate the parameters of the two functions bθ0 and σθ0 driving the dynamics of the hidden
variables (Xi)i≥0. Our method extends the previous work of El Kolei (2013) where a contrast approach is proposed for
homoscedastic noises.

In many applications of interest, the assumption of homoscedastic errors is too restrictive to be realistic. In Delaigle and
Meister (2008), the authors introduce a kernel estimator of the density fθ0 in the case of heteroscedastic contamination.

In this paper, the heteroscedasticity appears in the unobserved component which is also a property observed in practice
(financial, biology, chemistry). For this purpose, we define a new contrast function and under mild assumptions we show
that our estimator is consistent and asymptotically normally distributed which leads to obtain Confidence Intervals (CI) in
practice. It is worth noticing that our approach relies on Comte et al. (2010) where the authors propose a nonparametric
Nadaraya–Watson estimator of the two functions bθ0 and σθ0 . In the same perspective, in Dedecker et al. (2014) the authors
propose a semi-parametric estimator of θ0 based on a weighted least square estimation for homoscedastic noises. Their
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estimator is based on the introduction of a kernel deconvolution density and depends on the choice of a weight function. The
approach proposed here is different: it is not based on a weighted least square estimation and allows to estimate nonlinear
autoregressive models with heteroscedastic noises.

The fields of application are various and include astronomy, biology, chemistry, economy; see the numerous examples
described in Carroll et al. (1995). For practical issue, we propose to illustrate our estimator on a CIR process (Cox Ingersoll
Ross, see Cox et al., 1985) since it has foundmany applications and since this process presents serious heteroscedasticity.We
provide an analytical expression of the contrast function for this process, and we compare our estimator with a Monte Carlo
Expectation Maximization Likelihood estimator (MCEML) for different number of observations and various types of errors
distribution. Our Monte Carlo simulations show that our approach gives results similar to the MCEML but our approach is
the fastest computing. Furthermore, our estimator has the good expected properties (unbiased and small MSE) and presents
good convergence properties. The errors distribution seems to have a slight influence on the MSE which is related to the
current theoretical properties of deconvolution (see Fan, 1991).

The paper is organized as follows. Section 2 presents the notations and the model assumptions. Section 3 defines the
deconvolution-based M-estimator and states all of the theoretical properties. Some Monte Carlo simulations are discussed
in Section 4.

2. General setting and assumptions

2.1. Notations

Subsequently, for any function v : R → R, we denote by v∗ the Fourier transform of the function v: v∗(t) =
∫

eitxv(x)dx,
by ∥v∥ its L2(R)-norm, ⟨·, ·⟩ stands for the scalar product in L2(R) and ‘‘⋆’’ for the usual convolution product. Moreover,
for any integrable and square-integrable functions u, u1, and u2: we have (u∗)∗(x) = 2πu(−x) and⟨u1, u2⟩ =

1
2π

⟨
u∗

1, u
∗

2

⟩
.

Finally, ∥A∥ denotes the Euclidean norm of a matrix A, Yi = (Yi, Yi+1) and yi = (yi, yi+1), Pn (respectively, P) the empirical
(respectively, theoretical) expectation, that is, for any stochastic variable: Pn(X) =

1
n

∑n
i=1Xi (respectively, P(X) = E[X]).

Regarding the partial derivatives, for any function hθ ,∇θhθ is the vector of the partial derivatives of hθ with respect to (w.r.t)
θ and ∇

2
θhθ is the Hessian matrix of hθ w.r.t θ .

2.2. Assumptions

A0: θ0 belongs to the interior Θ0 of a compact set Θ , θ0 ∈ Θ ⊂ Rp; A1: the errors (εi)i≥0 are independent and
identically distributed centered random variables with finite variance, E

[
ε2
1

]
= s2ϵ . The density of ε1, fε , belongs to L2(R),

and for all x ∈ R, f ∗
ε (x) ̸= 0; A2: the innovations (ηi)i≥0 are independent and identically distributed centered random

variables; A3: the Xi’s are strictly stationary, ergodic and α-mixing with invariant density fθ0 ; A4: the sequences (Xi)i≥0 and
(εi)i≥0 are independent. The sequence (εi)i≥0 and (ηi)i≥0 are independent; A5: on Θ0, the functions θ ↦→ bθ and θ ↦→ σθ

admit continuous derivatives with respect to θ up to order 2; A6: The function to estimate lθ :=
(
b2θ + σ 2

θ

)
fθ belongs to

L1(R) ∩ L2(R), is twice continuously differentiable w.r.t θ ∈ Θ for any x and measurable w.r.t x for all θ in Θ . Each element
of ∇θ lθ and ∇

2
θ lθ belongs to L1(R)∩ L2(R); A7: the application θ ↦→ Pmθ admits a unique minimum and its Hessian matrix,

denoted by Vθ , is non-singular in θ0.

Remark 1. The compactness assumption A0 might be relaxed by assuming that θ0 is an element of the interior of a convex
parameter space Θ ∈ Rp. Assumptions A1–A2 are quite standard when considering estimation for convolution models.
Assumption A3 is useful for the statistical properties of our estimator. We give just below some conditions on the functions
b, σ and η ensuring this assumption. Assumptions A5–A6 ensure some smoothness for the functions b, σ . Assumption A7 is
also quite usual in the literature and serves for the construction and for asymptotic properties of our estimator.

Let us consider the process (Xi)i≥0 defined in (1), we give conditions on the functions b, σ and η ensuring that assumption
A3 is satisfied.

(i) The random variables (ηi)i≥0 are i.i.d. with an everywhere positive and continuous density function independent of (Xi).
(ii) The function bθ0 is bounded on every bounded set; that is, for every K > 0, sup|x|≤K |bθ0 (x)| < ∞.
(iii) The function σθ0 satisfies, for every K > 0 and constant σ1, 0 < σ1 ≤ inf|x|≤Kσθ0 (x) and sup|x|≤Kσθ0 (x) < ∞.
(iv) There exist constants Cb > 0 and Cσ > 0, sufficiently large M1 > 0, M2 > 0, c1 ≥ 0 and c2 ≥ 0 such that

|bθ0 (x)| ≤ Cb|x| + c1, for |x| ≥ M1 and |σθ0 (x)| ≤ Cσ |x| + c2, for |x| ≥ M2 and Cb + E[η1]Cσ < 1.

Under assumptions (i)–(iv), the process (Xi)i≥0 defined in (1) is strictly stationary and strongly mixing with a geometric
convergence rate (see Doukhan, 1994 and Chen and Chen, 2000).
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