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a b s t r a c t

The EM algorithm has been used for inference of the mixture cure models. However,
the complete-data and incomplete-data specifications have never been postulated ap-
propriately in literature. The goal of this paper is to fill in this gap by deriving proper
specifications.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Survival data with a latent cure fraction can be naturally modelled using mixture cure models (Berkson and Gage, 1952;
Farewell, 1982; Kuk and Chen, 1992; Peng and Dear, 2000; Sy and Taylor, 2000; Lu and Ying, 2004; Othus et al., 2012).
We first give notation. Let T ∗ denote the survival time and Y the indicator of the latent cure status. Let x be an observed
baseline covariate vector with effects on the survival of uncured subjects (Y = 1) and z a covariate vector with effects
on cure probability and may share common components with x. More precisely, given covariates (z, x), without loss of
generality, we assume p(Y = 1|z, x) only depends on z and denoted as π (z); and p(T ∗ > t|Y = 1, z, x) only depends
on x and denoted as S(t|Y = 1, x). Let h(t|Y = 1, x) = −

∂
∂t log S(t|Y = 1, x) be the hazard rate. Then the marginal survival

function S(t|z, x) = P(T ∗ > t|z, x) of an individual is

S(t|z, x) = 1 − π (z) + S(t|Y = 1, x)π (z). (1)

In the literature, π (z) = p(Y = 1|z) is often modelled using the logistic model π (z) = πγ (z) = [1 + exp(−z ′γ )]−1 with γ
being a vector of coefficients of z (Farewell, 1982). The probit model and other binary generalized linear models (GLM) can
also be used. The effects of x on the survival of the uncured group S(t|Y = 1, x) have also been modelled in many ways. For
examples, Farewell (1982) assumed S(t|Y = 1, x) = Sβ (t|x) to be the parametricWeibull survival function with a parameter
vector β . Kuk and Chen (1992) generalized the Weibull model Sβ (t|x) to the semiparametric Cox PH model (Cox, 1972)

Sβ (t|x) = [S0(t)]exp(x
′β), hβ (t|x) = h0(t) exp(x′β),

where S0(t) and h0(t) are the baseline survival and hazard functions, respectively. In addition, the accelerated failure time
(AFT) model (Buckley and James, 1979; Jin et al., 2006), the accelerated hazard models (Chen and Wang, 2000), and various
transformationmodels including the proportional oddsmodel (Lu and Ying, 2004) have been used tomodel the failure times
of the uncured subjects. Thus, the mixture cure models include a large class of useful models.
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The EM algorithm has played a significant role in effective inference of mixture cure models. In particular, Sy and Taylor
(2000) and Peng and Dear (2000) have successfully developed EM algorithms for the semiparametric Cox PH cure models.
EM algorithms for the AFT cure models and other mixture cure models have been developed by Zhang and Peng (2007) and
others.

As explained in Dempster et al. (1977), proper complete-data specifications are crucial in the formal development of
the EM algorithm to maximize the incomplete-data specification. However, neither the complete-data specification nor
the incomplete-data specification has been rigorously derived for mixture cure models. To fill in this gap, we derive both
complete-data and incomplete-data specifications formixture curemodels. The incorrect likelihood function in the literature
does lead to correct estimates because the missing term (1 − δ)1−y (see Section 2) is not dependent upon the parameters,
but using our correct derivation obviates the needs for any corrections to the incorrect likelihood function as have been
previously proposed in the literature.

Our paper is organized in the following way, we derive the correct complete likelihood in Section 2 and then we present
the incorrect complete likelihood functionwidely used in the literature and point out the differences between two likelihood
functions in Section 3. We end our paper with some discussion in Section 4.

2. Proper specifications of mixture cure models

Let (T ∗

i , Ci, Yi) be the survival time, censoring time, and uncure indicator of the ith subject with i = 1, . . . , n. Let zi, xi be
the observed covariate values for the ith subject. We use (ti, δi) to denote the observed survival time (possibly censored) and
censoring indicator (Ti, ∆i), i.e.

Ti = min(T ∗

i , Ci) and ∆i = I(T ∗

i < Ci).

The subscript i is generally omitted in deriving the complete-data specification for a generic subject. DenoteΘ = (γ , β, S0(·))
where S0(·) is the baseline survival function for uncured subjects. We assume πγ (z) = p(Y = 1|z, x, Θ) is modelled using a
binary GLM. Let hβ (t|x) be the hazard rate for Sβ (t|x) = S(t|Y = 1, z, x, Θ) with a baseline survival function S0(·). Similarly,
for the random censoring time C , we will use Sc(t|z, x) and hc(t|z, x) to denote its unknown survival and hazard functions
that do not involve the parameter Θ . We assume that, conditional on covariates, C is independent of T ∗ among uncured
subjects. Then the conditional distribution of (t, δ) given Y = 1 can be written as

p(t, δ|Y = 1, z, x, Θ) = [hδ
β (t|x)Sβ (t|x)][h1−δ

c (t|z, x)Sc(t|z, x)]. (2)

By the fact that p(t, δ, Y = 1|z, x; Θ) = p(t, δ|Y = 1, z, x, Θ)p(Y = 1|z, x, Θ), we have

p(t, δ, Y = 1|z, x, Θ) = πγ (z)[hβ (t|x)]δSβ (t|x)[hc(t|z, x)]1−δSc(t|z, x). (3)

It is obvious that Y = 0 implies δ = 0 so that

p(t, 0|Y = 0, z, x, Θ) = hc(t|z, x)Sc(t|z, x)

and

p(t, 1|Y = 0, z, x, Θ) = 0.

Thus

p(t, δ|Y = 0, z, x, Θ) = (1 − δ)[hc(t|z, x)Sc(t|z, x)]1−δ.

Note that p(Y = 0|z, x, Θ) = 1 − πγ (z). Similar to (3), we have

p(t, δ, Y = 0|z, x, Θ) = (1 − πγ (z))(1 − δ)[hc(t|z, x)Sc(t|z, x)]1−δ. (4)

From (3) and (4), and note that δy = δ, given the observed data (t, δ, z, x) and assuming knowing values of Y , the complete-
data specification p(t, δ, y|z, x, Θ), i.e., the conditional density of (Ti, ∆i, Yi) given covariates, can be given as

p(t, δ, y|z, x, Θ) = f (t, δ, y|z, x, Θ)[h1−δ
c (t|z, x)Sc(t|z, x)], (5)

where f (t, δ, y|z, x, Θ) is

f (t, δ, y|z, x, Θ) = (1 − δ)(1 − πγ (z))(1 − y) + hδ
β (t|x)Sβ (t|x)πγ (z)y. (6)

From equation (1.1) of Dempster et al. (1977), the incomplete-data specification is

p(t, δ|z, x, Θ) = p(t, δ, y = 0|z, x, Θ) + p(t, δ, y = 1|z, x, Θ).

From (3) and (4), the incomplete-data specification is

p(t, δ|z, x, Θ) = [(1 − πγ (z))(1 − δ) + πγ (z)hδ
β (t|x)Sβ (t|x)]h1−δ

c (t|z, x)Sc(t|z, x). (7)
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