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a b s t r a c t

The validity of the strong law of large numbers for multiple sums Sn of independent iden-
tically distributed random variables Zk , k ≤ n, with r-dimensional indices is equivalent
to the integrability of |Z |(log+

|Z |)r−1, where Z is the generic summand. We consider the
strong law of large numbers for more general normalizations, without assuming that the
summands Zk are identically distributed, and prove a multiple sum generalization of the
Brunk–Prohorov strong law of large numbers. In the case of identical finite moments of
order 2q with integer q ≥ 1, we show that the strong law of large numbers holds with the
normalization (n1 · · · nr )1/2(log n1 · · · log nr )1/(2q)+ε for any ε > 0.

The obtained results are also formulated in the setting of ergodic theorems for random
measures, in particular those generated by marked point processes.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let r ≥ 1 be an integer number and let Nr denote the set of r-dimensional vectors with positive integer coordinates.
Elements of Nr are denoted by k, n, etc. The inequality k ≤ n is defined coordinatewisely, that is ki ≤ ni, 1 ≤ i ≤ r , where
k = (k1, . . . , kr ) and n = (n1, . . . , nr ). Denote |n| = n1 · · · nr . Then, |n| → ∞ means that the maximum of all coordinates of
n converges to infinity and so is called max-convergence or product convergence, see Klesov (2014). Furthermore, n → ∞

means that all components of n converge to infinity, that is min(n1, . . ., nr ) → ∞, it is called themin-convergence in Klesov
(2014).

Consider an array {bn, n ∈ Nr
} of positive numbers indexed by Nr such that bn → ∞ as |n| → ∞. Define partial sums of

random variables {Zn, n ∈ Nr
} by

Sn =

∑
k≤n

Zk, n ∈ Nr .

✩ Supported by the Swiss National Science Foundation Scopes Programme Grant IZ7320_152292.
* Corresponding author.

E-mail addresses: klesov@matan.kpi.ua (O. Klesov), ilya.molchanov@stat.unibe.ch (I. Molchanov).

http://dx.doi.org/10.1016/j.spl.2017.08.007
0167-7152/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.spl.2017.08.007
http://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spl.2017.08.007&domain=pdf
mailto:klesov@matan.kpi.ua
mailto:ilya.molchanov@stat.unibe.ch
http://dx.doi.org/10.1016/j.spl.2017.08.007


O. Klesov, I. Molchanov / Statistics and Probability Letters 131 (2017) 56–63 57

The random field {Zn, n ∈ Nr
} is said to satisfy the strong law of large numbers with the normalization {bn, n ∈ Nr

} if Zn is
integrable for all n and

1
bn

(Sn − ESn) → 0 a.s. as |n| → ∞. (1)

If all Zn’s are centered or are not integrable, the validity of the strong law of large numbers means that

1
bn

Sn → 0 a.s. as |n| → ∞. (2)

It is easy to see that bn should grow faster than
√

|n|. If {Zn, n ∈ Nr
} are independent copies of a centered random

variable Z , then (2) for bn = |n| becomes the strong law of large numbers for multiple sums, which holds if and only
if E[|Z |(log+

|Z |)r−1
] < ∞, see Smythe (1973). Here log+t denotes the positive part of log t . If bn grows faster than |n|,

the corresponding results are variants of the Marcinkiewicz–Zygmund law. In this paper we present a whole spectrum of
such results exploring relations between the strength of the moment conditions and the growth rate of the sequence of
normalizing constants. In particular, we show that imposing sufficiently strong moment assumptions makes it possible to
bring the normalizing factors to bn = |n|

1/2(log n1 · · · log nr )ε for any ε > 0.
The strong law of large numbers was used in Smythe (1975) to derive the ergodic theorem for sums generated bymarked

point processes.We first provide an alternative proof (that gives a stronger result underweaker conditions) of the strong law
of large numbers claimed in Smythe (1975) to follow from themultivariate analogue of the Kronecker lemma. As we show in
Section 4, this lemma holds only in the nonnegative case. Indeed, we provide a counterexample to a ‘‘natural’’ generalization
of the Kronecker lemma which invalidates the proof of Smythe (1975, Th. 2.1.1).

Section 2 contains several strong laws of large numbers for multiple sums of not identically distributed random variables
that combinemoment conditions on the summandswith not so fast growing normalizing constants. Along the same line, we
generalize the Brunk–Prohorov criterion for the validity of the strong law of large numbers known for the case of univariate
sums, see Brunk (1948) and Prohorov (1950). In case of i.i.d. summands, the conditions simplify substantially.

Section 3 rephrases the results from Section 2 for random measures, in particularly, those generated by marked point
processes.

2. Strong laws of large numbers for multiple sums

2.1. Conditions on moments of order up to 2

The field {bn, n ∈ Nr
} is said to bemonotonic if bk ≤ bn for k ≤ n coordinatewisely. Define the increments of {bn, n ∈ Nr

}

by

∆[bn] =

∑
m=(m1,...,mr )∈{0,1}r

(−1)m1+···+mr bn−m,

where the array {bn, n ∈ Nr
} is extended for indices with non-negative coordinates by letting bn = 0 if at least one of the

coordinates of n vanishes. The non-negativity of∆[bn] for all n is a stronger condition than themonotonicity of {bn, n ∈ Nr
}.

Theorem 2.1 appears as Smythe (1975, Th. 2.1.1) and was announced first in Smythe (1973). However, it was formulated
in the particular case n → ∞ and assuming the non-negativity of increments ∆[bn] for the weights. In order to deduce the
strong law of large numbers from the convergence of randommultiple series, it relied on the Kronecker lemma for multiple
sums that was mentioned as a ‘‘simple generalization’’ of the univariate case in Smythe (1975, p. 116). It will be explained in
Section 4 that such a generalization holds only assuming that the summands are non-negative, and so the proof of Smythe
(1975, Th. 2.1.1) was not complete. We suggest an alternative proof that derives the strong law of large numbers under the
max-convergence |n| → ∞, and for this it is unavoidable to assume that

bn → ∞ as |n| → ∞ (3)

instead of n → ∞ in Smythe (1975). The one-dimensional case is considered in Fazekas and Klesov (2000).
Note that the convergence of multiple series

∑
n∈Nr an is always understood as the convergence of their partial sums∑

k≤nak as n → ∞.

Theorem 2.1. Assume that {bn, n ∈ Nr
} is monotonic. Let ϕ be a positive even continuous function on R such that x−1ϕ(x) is

non-decreasing and x−2ϕ(x) is non-increasing for x > 0. If {Zn, n ∈ Nr
} are independent centered random variables such that∑

k∈Nr

Eϕ(Zk)
ϕ(bk)

< ∞, (4)

then the series
∑

k∈Nr Zk/bk converges almost surely and (1) holds.
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