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a b s t r a c t

The Effective-Condition-Number (ECN) is a sensitivity measure for a linear system; it differs from the

traditional condition-number in the sense that the ECN is also right-hand side vector dependent. The

first part of this work, in [EABE 33(5): 637-43], revealed the close connection between the ECN and

the accuracy of the Method of Fundamental Solutions (MFS) for each given problem. In this paper,

we show how the ECN can help achieve the problem-dependent quasi-optimal settings for MFS

calculations—that is, determining the position and density of the source points. A series of examples on

Dirichlet and mixed boundary conditions shows the reliability of the proposed scheme; whenever the

MFS fails, the corresponding value of the ECN strongly indicates to the user to switch to other numerical

methods.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The Method of Fundamental Solutions (MFS) is a popular
numerical method for solving homogeneous boundary value
problems. For simplicity, our presentation is restricted to the
homogeneous Poisson problem

Du¼ 0 in O�R2,

@ðkÞn u¼ fk on Gk � @O, kAf0,1g, ð1Þ

where the operator @n is the outward-normal derivative,
G0 [ G1 ¼ @O, G0 \ G1 ¼ |aG0, and in this paper, the functions
f0 and f1 are called the boundary data functions which are used to
generate boundary data. The MFS, belonging to a special class of
Trefftz Methods [17,18], approximates the solution of the
boundary value problem (1) by linear combinations of funda-
mental solutions centered at source-points located outside the
domain of interest. Unknown coefficients are sought to best-fit
the boundary data with the singularities not ever going into the
domain O; this is done usually by collocation but other weak-
formulations work too. The applications of the MFS are very wide:
from linear problems [7,15,31], to nonlinear equations [1,3], and
to inverse problems [4,30]. Thorough surveys on the MFS can be
found in [6,9].

Recent research on the MFS is extensive and it is commonly
believed that the MFS can always achieve highly accurate solution
up to the order of machine precision. Recently, Schaback [27]
made the following observation. It is usually due to convenience

that many researchers choose harmonic functions to be boundary
data functions for verifying the accuracy of the MFS; that is, both
Df0 ¼ 0 and f1 ¼ @nf0 hold in R2. With these globally harmonic

boundary data functions, the MFS calculations are always stable
and its results are always accurate; both facts hold independently
of the shape of O. Moreover, using harmonic polynomial
approximations will do even better than the MFS in such
situations. Many applications in engineering and science give rise
to boundary data functions which are ‘‘not-that-nice’’. For
example, the boundary control method in [23] gives subproblems
with f0 being fundamental solutions but f1 � 0. This either means
the solution to (1) has a finite harmonic-extension outside the
domain O or, in the serious situations, the solution or one of its
derivatives has a singularity on the boundary @O. All these facts do
not make the MFS impractical, but one needs to be more cautious
when employing the method. The solution provided in [27] is an
adaptive algorithm that selects an appropriate basis (either a
fundamental solution or a harmonic polynomial) iteratively. The
algorithm there is one variation of the greedy algorithms for
asymmetric meshless collocation methods [12,14,22,20,21] and it
shares some common features to the matching-pursuit algorithm
[25] for image processing. The full details are omitted here and we
are going to present another alternative from a very different
approach.

2. MFS linear systems and ECN

Let ~O*O be the fictitious domain. The set-up of the MFS linear
system often involves placing a set of M collocation points
X¼{x1,y, xM} on the domain boundary and a set of N source
points X¼ fx1, . . . ,xNg on the fictitious boundary @ ~O. The MFS
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approximates the solution of (1) by

sðxÞ ¼ a0þ
XN

j ¼ 1

aisjðxÞ, xA ~O: ð2Þ

We now have enough information to set-up an M�N linear
system

a0þ
XN

j ¼ 1

ajsjðxiÞ ¼ f0ðxiÞ for xiAG0,

XN

j ¼ 1

aj@nsjðxiÞ ¼ f1ðxiÞ for xiAG1: ð3Þ

For the Poisson problem we considered, the fundamental solution
centered at the source point xjAX is given as

sjðxÞ :¼ logJx�xjJ
2
2

for xAR2. Depending on the values of M and N, the linear system
(3) can be a linear unsymmetric over—or underdetermined M�N

system of the form Aa¼ b. After obtaining the unknown
coefficients, the MFS approximation can be evaluated anywhere
inside the fictitious domain by (2). The above procedure can be
easily generalized to other types of differential equations simply
by using the appropriate the fundamental solutions; see [13].

It is not difficult to see why the traditional condition number
cannot be a good indicator for the MFS accuracy. The coefficient
matrix A depends on the fundamental solution (i.e. the differential
equation itself), and the placement of the source points and
collocation points (X and X); whereas the right-hand side vector b
depends on the boundary shape, the location of the collocation
points and most importantly, the boundary data functions. From
[27], we know that the boundary data functions have a critical
influence on to the MFS accuracy. The traditional condition
number, independent of the boundary data functions, cannot
provide the desired information. The Effective-Condition-Number

(ECN), denoted by keff ¼ keff ðA,bÞ, is a sensitivity measure for the
linear system rather than for the matrix. Namely, for Aa¼ b, we
have

JDaJ
JaJ rkeff

JDbJ

JbJ
with keff :¼

1

sþmin

JbJ

JaJ , ð4Þ

where sþmin denotes the smallest nonzero singular value of A and if
A is singular, solutions to linear systems (a and Da) are obtained
by the standard pseudoinverse formula.

In our first investigation [5], the following connection between
the ECN and the accuracy of MFS was observed:

ðL1 error of MFSÞ � ðECN of the MFS linear systemÞ ¼Oð1Þ: ð5Þ

The numerical experiments presented in [5], however, were
rather preliminary: we did not include the constant basis in the
expansion (2) and, for simplicity, we focussed on exact-deter-
mined system (M¼ N) in [5] only. We discovered later that the
Accuracy-ECN relationship (5) not only holds for all situations in
the MFS calculations (exact-, over-, and underdetermined) but
also for a closely related method–the Boundary Knot Method
[8,29]. Readers are also referred to [16,19] for the recent
development of the MFS and ECN.

3. Optimizing the MFS setting

Using the ECN in (4) to optimize the MFS setting has a clear
advantage over using only boundary data [10]; that is, problems
with Neumann or mixed boundary conditions can now be
handled even though all or part of the Dirichlet data are missing.
Looking for the true optimal setting for the MFS is an NP-hard

(non-deterministic polynomial-time hard) problem. In some early
applications of the MFS, the sources were taken to be part of the
unknowns [11,24]. More recent paper related to the optimal
placement of the sources can be found in [2]. To overcome this,
we have to impose some constraints. This restricts the search to a
more practical way and allows us to search for a quasi-optimal
setting for the MFS. First of all, the number of collocation points
used, M, should be sufficiently large but fixed. The next constraint
is that the fictitious boundary varies according to some pre-
defined formulas. For example, if @O is given in polar by r¼ rðyÞ,
then the fictitious domain can be constructed by r¼DþrðyÞ with
the distance between the domain boundary and the fictitious
boundary denoted by D. Users often use a circular fictitious
domain with radius D regardless of the shape of O. In either case,
the parameter D is what we try to optimize. Next, the set of N

source points are distributed on the fictitious boundary according
to some rules of distribution (i.e. uniformly). This allows us to
search for the optimal N on a given fictitious domain.

From the Accuracy-ECN relationship (5), if we want to
minimize the MFS error, the corresponding ECN should be
maximized. Equivalently, we can recast the optimization problem
as minimizing the inverse of the ECN. Under the imposed
constraints, the N-Search and D-Search can be casted, respec-
tively, as

N�Search : min
N
k�1

eff ðA,bÞ with ~O fixed, ð6Þ

D�Search : min
D
k�1

eff ðA,bÞ with N fixed: ð7Þ

In both searches, only one of the parameters (N and D) is treated
as a scalar variable. The objective functions are scalar functions
returning the ECN as output. Since the coefficient matrices are
often ill-conditioned, we found that both objective functions are
nonsmooth and hence (quasi-) gradient-based methods are not
suitable for our optimization problems. Instead of the exhausting
brute-force systematic search, we will employ the golden section
search by providing lower- and upper-bounds to N and D.

Performing either one of the optimizations (6) or (7) requires
fixing the other parameter a priori. To perform the N-Search, we
need to fix a D and therefore the fictitious domain; and vice versa.
To make our quasi-optimal selection closer to the real one, a
sequential search can be performed. In this paper, we only
consider the three-step searching processes, that is a DND-Search.
With a relative small number of source points, the D-Search is
faster and more importantly, experience tells us that the distance
of the sources is a more important factor. It makes sense to run it
twice in order to guarantee optimality. The idea of optimal
setting, with no doubt, imposes a large overhead on the MFS.
However, the MFS linear systems are relatively small and easy to
solve. Combined with ECN, the optimized MFS becomes a more
reliable subroutine for more sophisticated problems, e.g. improve
the MFS subroutine in the construction of reduced basis [28].

4. Numerical examples

To illustrate the accuracy of the proposed DND-Search
procedure, we now proceed with a series of numerical demon-
strations. All boundaries considered are generated by a polar
function r such that @O¼ fðr,yÞ : r¼ rðyÞ,0ryo2pg. The corre-
sponding fictitious boundary @ ~O is then constructed by r¼ rðyÞþD

where D is the source distance to be optimized. The collocation
systems are obtained using numerical expansion (2) with N (M)
source points (collocation points) uniformly distributed with
respect to the y- variable on @O (@ ~O). Unless otherwise
mentioned, we start the first D-Search with N¼100 and a fixed
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