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a b s t r a c t

We consider several special cases of iterations of random i.i.d. linear functions with beta
distributed fixed points. When iterated in a backward directionwe obtain a nested interval
scheme, whilst the forward direction generates an ergodic Markov chain. Our approach
involves relating the random equation satisfied by the beta distributed fixed point to a
random equation with a gamma distributed fixed point. The paper extends many results
available in the existing literature.
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1. Introduction

In this note we study iterations of linear randommappings

Fn := fAn,Bn , n ≥ 1, (1)

where fAn,Bn are random elements of the family

{fa,b(x) = ax + b(1 − x) : (a, b) ∈ [0, 1]2},

(A1, B1), (A2, B2), . . . being an i.i.d. sequence of [0, 1]2-valued random vectors with a given distribution µ. The forward
iteration of the mappings is given by the compositions

Xn(·) := Fn ◦ Fn−1 ◦ · · · ◦ F1(·), n ≥ 1, X0(x) ≡ x, (2)

while the backward iteration of the mappings is given by

Yn(·) := F1 ◦ F2 ◦ · · · ◦ Fn(·), n ≥ 1, Y0(x) ≡ x. (3)

The general theory of forward and backward iterations of i.i.d. random functions is well-established (see e.g. Chamayou and
Letac, 1991; Diaconis and Freedman, 1999; Letac, 1986). Other general results on iterated random functions are also found
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in for instance (Dyszewski, 2016; Rachev and Samorodnitsky, 1995; Stenflo, 2001) and references therein. Here wewill only
summarise the results relevant to this study.

It is clear that Xn(·) has the same distribution as Yn(·) for each n. However, the properties of the forward and backward
processes are very different. Under a broad contraction condition, for any fixed x ∈ [0, 1], the forward sequence {Xn(x)}n≥0
is an ergodic Markov chain, while the backward sequence {Yn(x)}n≥0 converges a.s. and is not in general a Markov chain
(see e.g. Diaconis and Freedman, 1999). In addition, the limiting distributions for the two sequences coincide due to the
following contraction principle (see e.g. Proposition 1 in Chamayou and Letac, 1991). If Y := limn→∞ Yn(x) a.s. exists and
does not depend on x (in which case we will say that F1 is a contraction), then the Markov chain {Xn(x)}n≥0 is ergodic with
stationary distribution given by the law of Y .

The forward process (2) is a special case of the random recurrence

Vn = DnVn−1 + Cn, n ≥ 1, (4)

where (Dn, Cn) are i.i.d. R2-valued random vectors. If Vn converges in distribution, the limiting distribution is the solution
to the perpetuity equation

V d
=DV + C, V independent of (D, C) d

= (D1, C1). (5)

A key reference on the perpetuity recurrence (4) is Vervaat (1979), where sufficient conditions for the existence and
uniqueness of the limiting distribution of Vn as n → ∞ are given. In particular, if the condition

n
k=1

log |Dk|
d

→ −∞ (6)

holds, then Lemma 1.5 in Vervaat (1979) implies that any solution V of (5) is unique in distribution and Vn converges in
distribution to V for all V0. In the special case of the forward process (2) generated by the i.i.d. mappings (1) it is clear that
condition (6) is satisfied when

P(|A1 − B1| = 1) < 1, (7)

and this is precisely the condition required for F1 to be a contraction.
In our case, starting from a fixed x ∈ [0, 1] and writing Xn = Xn(x), the forward iteration (2) is given by

Xn = (An − Bn)Xn−1 + Bn, n ≥ 1. (8)

If F1 is a contraction, the unique stationary distribution P of the forward process (8) satisfies the random equation

X d
= AX + B(1 − X), X ∼ P independent of (A, B) d

= (A1, B1), (9)

where X ∼ P denotes that X has distribution P . Therefore, the stationary distribution of the forward process and the limiting
distribution of the backward process coincide with the law of solution to (9).

We can interpret the forward process (2) in terms of the movement of a particle in [0, 1], where Xn is the location of the
particle at time n, and the particle moves from Xn−1 to Xn by (8). In particular, we will consider those models where, for
each n, at least one of the following holds: one has An = 1 (which would imply a move to the right) or Bn = 0 (implying a
move to the left). Several special cases of models of this type (where, at each step, a particle at Xn ∈ [0, 1] moves at time
n+ 1 either left to a random point in [0, Xn], or right to a random point in [Xn, 1]) have been shown to have beta distributed
stationary distributions (see e.g. DeGroot and Rao, 1963; Diaconis and Freedman, 1999; Stoyanov and Pacheco-Gonzalez,
2008; Stoyanov and Pirinsky, 2000). See also McKinlay and Borovkov (2016), Pacheco-Gonzalez (2009) and Ramli and Leng
(2010), where an extension of thismodel to the casewhen the direction of the nextmove is a function of the particles current
location was considered.

The forward process has also been has been applied to improving the estimation of unobservable signals by adding
Markovian noise induction (Iacus and Negri, 2003), while the extended version studied in McKinlay and Borovkov (2016)
and Ramli and Leng (2010) was applied to a robot coverage algorithm which could equally apply to the models presented
below. In addition, the extendedmodel was used tomodel survival probabilities in ametapopulationmodel (McVinish et al.,
2016).

Wewill interpret the backward process (3) as generating a sequence of nested intervals I0 = [0, 1] ⊃ I1 ⊃ I2 ⊃ · · · given
by the ranges of the corresponding backwardmappings Y0, Y1, Y2, . . . (i.e. Yn maps [0, 1] onto In), and consider only the case
when |In| → 0 as n → ∞ (i.e. when F1 is a contraction). A nested interval scheme of this type was studied in Johnson and
Kotz (1995) and Kennedy (1988), where the limiting location Y was shown to be beta distributed.

In some of the cases we consider, the nested interval scheme generated by the backward iteration (3) is an interval
splitting scheme of the following type. Choose a random (not necessarily uniformly distributed) splitting point S1 in [0, 1]
and select according to a given (possibly random) rule one of the subintervals [0, S1], [S1, 1]. Continuing this procedure
in the same way independently on the chosen subinterval, we obtain a random sequence {Sn}n≥1. When the law of the
splitting point S1 is not concentrated on {0, 1}, the length of the chosen interval tends to zero a.s. as n → 0, and therefore
Sn converges a.s. to a random variable Y . In several cases considered previously, this limiting random variable Y turns out to
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