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a b s t r a c t

We consider a branching process (Zn) in a stationary and ergodic random environment ξ =

(ξn). Athreya and Karlin (1971) proved the basic result about the concept of subcriticality
and criticality, by showing that under the quenched law Pξ , the conditional distribution
of Zn given the non-extinction at time n converges in law to a proper distribution on
N+

= {1, 2, · · ·} in the subcritical case, and to the null distribution in the critical case,
under the condition that the environment sequence is exchangeable. In this paper we first
improve this basic result by removing the exchangeability condition on the environment,
and by establishing a more general result about the conditional law of Zn given the non-
extinction at time n + k for each fixed k ≥ 0. As a by-product of the proof we also
remove the exchangeability condition in another result of Athreya and Karlin (1971) for
the subcritical case about the decay rate of the survival probability given the environment.
We then establish a convergence theorem about the ratio Pξ (Zn = j)/Pξ (Zn = 1), which
can be applicable in each of the subcritical, critical, and supercritical cases.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A branching process in a random environment is a natural and important extension of the Galton–Watson process, where
the offspring distributions vary from generation to generation according to a random environment. This model was first
introduced by Smith and Wilkinson (1969) in 1969. Since then this model has attracted the attention of many authors, see
for example the works by Athreya and Karlin (1971a,b), Afanasyev et al. (2005), Bansaye and Berestycki (2009), Böinghoff
et al. (2010), Liang and Liu (2013), Huang and Liu (2014, 2012), Bansaye and Vatutin (2017), Grama et al. (2017), and the
references therein.

For a Galton–Watson process (Zn), it is well-known (Athreya and Ney, 1972) that in the subcritical case, we have, for each
k ≥ 0,

lim
n→∞

P(Zn = j|Zn+k > 0) = bj,k, j = 1, 2, . . . (1.1)

where {bj,k : j ≥ 1} is a proper probability distribution onN = {1, 2, . . .}, while in the critical case the limit above identically
vanishes. This is the basic concept of subcriticality and criticality; it shows an essentially different limit behavior between
the subcritical and critical cases, although in both cases the branching process becomes extinct almost surely.
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For k = 0, this result was extended by Athreya and Karlin (1971b) to a branching process in an exchangeable stationary
and ergodic environment. As our first objective, in this paper wewill not only improve the aforementioned result of Athreya
and Karlin (1971b) for the case k = 0 by removing the exchangeability condition on the environment sequence, but also
establish a general result valid for all k ≥ 0, thus extending completely the corresponding result on the Galton–Watson
process. Moreover, as a by-product, with the same technique we will also remove the exchangeability condition on the
environment sequence of another result by Athreya and Karlin (1971b, Corollary 2) in the subcritical case, about the decay
rate of the survival probability given the environment, and, more generally, for the decay rate of 1− fξ0(· · · fξn(s) · · ·), where
fξn is the progeny probability generating function at time n. The main idea is to remove the exchangeability condition by
embedding the environment sequence ξ into a two-sided ergodic sequence, and then using the results of Athreya and Karlin
for the time-reversed sequence ηk = ξ−k, k ≥ 0.

The second objective in this paper is to establish a ratio theorem for a branching process in a random environment. For a
Galton–Watson process (Zn), the following interesting ratio theorem is known (see Section 1.7 in Athreya and Ney, 1972):
for each j ≥ 1, the limit

lim
n→∞

P(Zn = j)
P(Zn = 1)

= πj (1.2)

exists, provided that P(Z1 = 1) > 0. This result is useful in the study of some other problems (see e.g. Theorem 1.8.1 in
Athreya and Ney, 1972). In this paper we will extend this theorem to a branching process in a random environment.

The rest of the paper is organized as follows. In Section 2, we introduce ourmain results. Theorems 2.1 and 2.3 are proved
in Section 3, while Corollary 2.2, Theorem 2.4 are proved in Sections 4 and 5, respectively.

2. Main results

In this section we will present the main results of this paper.
Let us first describe the model. A branching process in a random environment can be defined as follows. Let ξ =

(ξ0, ξ1, ξ2, . . .) be a stationary and ergodic sequence of random variables taking values in some space Θ , whose realization
corresponds to a sequence of probability distributions on N = {0, 1, 2, . . .}:

p(ξn) = {pi(ξn); i ≥ 0}, where pi(ξn) ≥ 0 and
∞
i=0

pi(ξn) = 1.

A branching process (Zn)n≥0 in the random environment ξ is, by definition:

Z0 = 1 and Zn+1 =

Zn
i=1

Xn,i for n ≥ 0,

where given the environment ξ, Xn,i (n ≥ 0, i ≥ 1) is a sequence of (conditionally) independent random variables, each
Xn,i has distribution p(ξn). Let

fξn(s) =

∞
j=0

pj(ξn)sj, s ∈ [0, 1],

be the probability generating function of p(ξn), and

φn(ξ ; s) = fξ0(fξ1(· · · fξn−1(s) · · ·)), s ∈ [0, 1]. (2.1)

Then Eξ (sZn) = φn(ξ ; s) is the conditional probability generating function of Zn given the environment sequence ξ . Set for
n = 1, 2, . . . ,

φ̃n(ξ ; s) = fξn−1(fξn−2(· · · fξ0(s) · · ·)), s ∈ [0, 1]. (2.2)

We now present the results of this paper.
Our first result concerns the basic notion of criticality and sub-criticality, already well discussed in the famous work

by Athreya and Karlin (1971b): in their Theorems 2 and 4, they showed that in the subcritical case, the conditioned law
of Zn approaches a non degenerate limit law while for the critical case this limit is a null distribution. Theorem 2.1 and
Corollary 2.1 improve the aforementioned results of Athreya and Karlin (1971b) by removing the exchangeability condition
on the environment sequence.

Theorem 2.1. (i) If E log f ′

ξ0
(1) = 0, then for each s ∈ [0, 1), as n → ∞,

Eξ (sZn |Zn > 0) → 0 in law. (2.3)

(ii) If E log f ′

ξ0
(1) < 0, then there exists a probability generating function g(ξ ; ·) such that, for each s ∈ [0, 1], as n → ∞,

Eξ (sZn |Zn > 0) → g(ξ ; s) in law. (2.4)
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