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a b s t r a c t

The 2D general solution for the plane problem of thermoelastic materials is derived in terms of three

harmonic functions using strict differential operator theory for the case of distinct eigenvalues. Based

on the obtained general solution, the 2D fundamental solution for a steady line heat source in an infinite

and a semi-infinite thermoelastic plane is obtained by three newly introduced harmonic functions. All

components of coupled fields are expressed in terms of elementary functions and they are convenient

to be used.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Fundamental solutions or Green’s functions play an important
role in both applied and theoretical studies on the physics of solids.
They are the foundations for lot of further works. For example,
fundamental solutions can be used to construct many analytical
solutions of practical problems when boundary conditions are
imposed. They are essential in the boundary element method as well
as the study of cracks, defects and inclusions. A great deal of work on
this area can be found in the literature. When thermal effects are not
considered, one can refer to the excellent works of Lifshitz and
Rozentsveig [1], Elliott [2], Kroner [3], Willis [4], Sveklo [5], Lejcek
[6], Pan and Chou [7], Banerjee and Butterfield [8].

When thermal effects are considered, Sharma [9] gave the
fundamental solution of transversely isotropic thermoelastic
materials in an integral form. Yu et al. [10] gave the Green’s
function for a point heat source in two-phase isotropic thermo-
elastic materials. Chen et al. [11] derived a compact 3D harmonic
general solution for transversely isotropic thermoelastic materi-
als. Based on this general solution, Hou et al. [12] obtained the 3D
fundamental solution for a steady point heat source in an infinite
orthotropic thermoelastic body. In addition, Hou et al. [13]
obtained 2D Green’s function for a steady line heat source in
the interior of a semi-infinite orthotropic thermoelastic plane.
However, the important 2D fundamental solution for a steady line

heat source in an infinite orthotropic thermoelastic plane has not
been presented so far.

As a further work, 2D fundamental solution for a steady line
heat source in an infinite orthotropic thermoelastic plane is
investigated in this paper. By the way, the solution for a steady
line heat source on the surface of a semi-infinite orthotropic
thermoelastic plane is also presented. For this object, the 2D
general solution for the case of distinct eigenvalues, which is the
most common case, is derived in Section 2. In Sections 3 and 4,
three new suitable harmonic functions are constructed in the
form of elementary functions with undetermined constants. The
corresponding coupled field can be obtained by substituting these
harmonic functions into the general solution. Finally, the paper
concludes in Section 5.

2. 2D general solution for orthotropic thermoelastic material

If all components are independent of coordinate y, one will
have the so-called plane problem in 2D Cartesian coordinates
(x,z). When the principal material direction lies in x and z axes, the
constitutive equations of orthotropic thermoelastic materials are
in the form of
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where u and w are components of the mechanical displacement in
x and z directions, respectively; sij are the components of stress; y
is the temperature increment; and cij and lii are elastic constants
and thermal modules, respectively.

In the absence of body forces, the mechanical and heat
equilibrium equations are
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where bii ði¼ 1,3Þ are coefficients of heat conduction.
Substituting Eq. (1) into Eq. (2a) and combining the result with

Eq. (2b), yields

D½u w y�T ¼ 0, ð3Þ

where D is a differential operator matrix defined by
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Eq. (3) is a homogeneous set of differential equations in u, w and
y. The general solution can be obtained routinely by the operator
theory as

u¼ Ai1F, w¼ Ai2F, y¼ Ai3F ði¼ 1,2,3Þ, ð5Þ

where Aij (i,j¼1,2,3) are the algebraic cominors of the matrix D of
which the determinant is
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where a¼c33c44, b¼ c11c33þc2
44�ðc13þc44Þ

2, c¼c11c44. The func-
tion F in Eq. (5) should satisfy the following homogeneous
equation:

Dj jF ¼ 0: ð7Þ

It can be seen that if i¼1, 2 are taken in Eq. (5), two general
solutions are obtained while y¼0. These solutions are in fact
identical to those without thermal effect and are not discussed
here. Therefore, i¼3 should be taken in Eq. (5) and the following
general solutions are obtained:
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where a1¼�l11c44, b1¼l33(c13+c44)�l11c33, a2¼l33c11�

l11(c13+c44), b2¼l33c44. F is the general solution of Eq. (7), which
can be rewritten as
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where zj¼sjzj s3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b11=b33

p
. sj (j¼1,2) are two roots (with

positive real part) of the following algebraic equation:

as4�bs2þc¼ 0: ð10Þ

As known from the generalized Almansi’s theorem [14], the
function F can be expressed in terms of three harmonic functions:

F ¼ F1þF2þF3 for distinct sj ðj¼ 1,2,3Þ, ð11aÞ
F ¼ F1þF2þzF3 for s1as2 ¼ s3, ð11bÞ
F ¼ F1þzF2þz2F3 for s1 ¼ s2 ¼ s3, ð11cÞ

where Fj satisfy the following harmonic equation:
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The general solution for the case of distinct roots, which is the
most common case, can be derived as follows:
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where
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The general solution for other two cases can be derived in the
same way.

Eq. (13) can be further simplified by letting
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Utilizing the above equation yields
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where

k1j ¼ k2j=k1j, 5k23 ¼ k33=k13: ð17Þ

The functions cj still satisfy the following harmonic equation:
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Substituting general solution (16) into Eq. (1) yields
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where k21 ¼ k22 ¼ 0.
Substituting Eq. (19) into (2) by using Eq. (18), the following

identities can be obtained:
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By virtue of the above equations, the general solution (19) can
be simplified as
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