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a b s t r a c t

This paper considers nonparametric quantile regression models for complex data of mixed
categorical and continuous variables together with missing values at random (MAR). In
consideration of the increasingly popular application of multiple imputation for handling
missing data and the advantages of nonparametric quantile regression, we propose an ef-
fective and accurate multiple imputation method. The estimation procedure not only does
well in modeling with mixed categorical and continuous data, but also makes full use of
the entire data set to achieve increased efficiency. The proposed estimator is asymptoti-
cally normal. In simulation study, we compare the performance of themultiple imputation
method with complete case (CC), Regression imputation and nearest-neighbor imputation
methods, and outline advantages and drawbacks of the differentmethods. Simulation stud-
ies show that the proposed multiple imputation method performs better.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Variables used as covariates often have missing values (Yang and Kim, in press). A simple approach, called a complete-
case analysis, uses only observations without missing values. The complete case method can lead to biased estimators and
is inefficient relative to procedures that use observations with partial information.

Imputation is a widely used method to exploit the full information contained in the data set. In imputation, the missing
values are replaced with plausible values derived under a set of assumptions. Well-known imputation methods include
mean imputation and nearest-neighbor imputation.

Two types of imputation procedures are single imputation and repeated imputation. In single imputation, each missing
value is replaced with a single imputed value. Examples of single imputation methods include Cheng (1994) and Wang
et al. (2004). In repeated imputation, each missing value is replaced with multiple imputed values. Two broad categories of
repeated imputation procedures are multiple imputation and fractional imputation Kim and Shao (2013).

Repeated imputation overcomes limitations associated with single imputation (Landerman et al., 1997). The use of more
than one imputed value can lead tomore precise estimators than those based on a single imputed value. The use of multiple
imputed values also allows estimation of the variance associated with the imputation procedure. We focus on a frequentist
version of the type of multiple imputation discussed in Little and Rubin (1987). Our multiple imputation paradigm is closely
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related to that ofWei et al. (2012). Multiple imputation creates L > 1 complete data sets. Each complete data set is analyzed
by standard complete-data methods, and the results are then combined.

Quantile regression, as first introduced by (Koenker and Bassett, 1978), is gradually developing into an important
modeling tool, due to its flexibility in exploring the relationship between the response and the covariates. Compared with
mean regression, quantile regression is more explicable and robust, when the distribution of data is typically skewed or the
data contains some outliers. However, it is not awell-developed topic to effectively handlemissing values especiallymissing
covariates with quantile regression method. Wei et al. (2012) proposed a multiple imputation estimator for parameter
estimation in linear quantile regression models with covariates missing at random. Sherwood et al. (2013) studied a
weighted quantile regression approach for estimating the conditional quantiles of health care cost data with missing
covariates. Admittedly, the parametric modeling approach is not robust to functional form specification and may introduce
a large bias when the model is misspecified. Compared with traditional parametric estimation techniques, nonparametric
techniques have been applied to a variety of problems and offer a great deal of flexibility. McMillen and McDonald (1997)
pointed out that nonparametric estimation procedures for modeling polycentric cities are flexible enough to account for
functional form misspecification, and the nonparametric estimates are more accurate than OLS regression. Stone (1985)
considered the problem of estimating a multivariate joint distribution, and showed that the parametric approach starts
with the assumption of an a priori model for distribution function that contains finitely many unknown parameters, while
the nonparametric approach eschews such an assumption. Wang and Chen (2009) proposed a nonparametric imputation of
themissing values froma kernel estimator of the conditional distribution of themissing variable given the always observable
variable, and used empirical likelihood to construct a profile likelihood for the parameter.

In applied settings, however, one frequently encounters a mixture of discrete and continuous data. Rather than using the
conventional frequency approach to deal with the discrete variables, Li and Racine (2008) proposed amethod to smooth the
discrete and the continuous variables, which have several attractive features and give us some enlightenment.

The method proposed in this paper has several features, which admits both categorical and continuous data, provides
flexibility and robustness benefitting from nonparametric modeling, combines quantile regression with missing data, and
develops a multiple imputation to improve estimation efficiency.

The remaining part of the paper is organized as follows. In Section 2wedevelop an effective technique ofmultiple imputa-
tion in nonparametric quantile regression withmissing covariates and investigate main results of the asymptotic properties
for the proposed estimator. Section 3 provides the comparison between multiple imputation method and complete case,
regression imputation and neighbor-nearest imputation method through simulation study. Section 4 concludes the paper
with some discussions.

2. Estimation

We consider that regressors contain a mix of discrete and continuous variables. Define X = (X c, Xd), where X c is a p× 1
continuous randomvector, and Xd is a q×1 discrete randomvector.We consider a nonparametric quantile regressionmodel
given by

Qτ (Y |X c, Xd) = mτ (X c, Xd), (1)

where τ is the quantile and lie in (0, 1), andm(·) is an unknown continuously differentiable function. Denote f (x) = f (xc, xd)
as the joint density function of (X c, Xd). Here Xd may be missing, while X c is always observed. We use n for the total sample
size, n1 for the complete observations and n0 for the observations including Xd missing, i.e. n = n1 + n0. Thus, observations
can be expressed as {(yi, xci , x

d
i ) : i = 1, . . . , n1} and {(yj, xcj , ·) : j = n1 + 1, . . . , n}. The MAR assumption in this paper,

following fromWei et al. (2012), is defined as follows:

P(δ = 1|Y , X c, Xd) = P(δ = 1|X c),

where δ is an indicator variable and δ = 1 means Xd is missing. As Chen et al. (2015) said, the missing function depends on
the observed covariate but not on the response even when the response data are fully observed.

It is well known that the selection of smoothing parameters is of crucial importance to estimate the model (1). Li and
Racine (2004) proposed a natural extension of Aitchison and Aitken (1976) work to the problem of mixed categorical and
continuous data in a nonparametric regression framework, and obtained smoothing parameters from the least squares
cross-validation. According to Li and Racine (2004), we obtain the product kernel function for the categorical variables given
by
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where I(·) denote an indicator function, Xd
is denote the sth component of Xd

i , and λs ∈ [0, 1] is a bandwidth. Xd
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ordinal variables and the left are categorical. The product kernel function used for the continuous variables is given by
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